












AIRPLANE
DESIGN AND CONSTRUCTION



5M? Qraw'3/illBook& 1m
PUBLISHERS OF BOOKS F O P^

Coal Age * Electric Railway Journal
Electrical World v

Engineering News-Record

American Machinist v The Contractor

Engineering 8 Mining Journal ^ Power
Metallurgical 6 Chemical Engineering

Electrical Merchandising



'AIRPLANE
DESIGN AND CONSTRUCTION

BY

OTTORINO POMIL'IO
CONSULTING AERONAUTICAL ENGINEER FOR THE POMILIO BROTHERS CORPORATION

FIRST EDITION

McGRAW-HILL BOOK COMPANY, INC.

239 WEST 39TH STREET. NEW YORK

LONDON: HILL PUBLISHING CO., LTD.

6 & 8 BOUVERIE ST., E. C.

1919



COPYRIGHT, 1919, BY THE

MCGRAW-HILL BOOK COMPANY, INC.

MAP1.E PRE8S YORK



anh <0rttUt





INTRODUCTION

By far the major part of experimental work in aero-

dynamics has been conducted in Europe rather than in

America, where the feat of flying in a heavier than air ma-
chine was first accomplished. This book presents in greater
detail than has hitherto been attempted in this country the

application of aerodynamic research conducted abroad to

practical airplane design.

The airplane industry is now shifting from the design and
construction of military types of craft to that of pleasure
and commercial types. The publication of this book at

this time is, therefore, opportune, and it should go far

toward replacing by scientific procedure many of the "cut

and try" methods now used. Employment of the data

presented should enable designers to save both time and

expense. The arrangement, presentation of subject matter,

and explanation of the derivation of working formulae,

together with the assumptions upon which they are based,

and consequently their limitations, are such that the book

lends itself to use as a text in technical schools and colleges.

The dedication of this volume to Wilbur and Orville

Wright is at once appropriate and significant; appropriate,

in that it is a tangible expression of the keen appreciation

of the author for the great work of these two brothers;

and significant, in that it is a return, in the form of a rational

analysis of many of the problems relating to airplane design

and operation, on the part of the product of an older civili-

zation to the product of the new, as a sort of recompense
for the daring, courage and inventive genius which made

human flight possible.

J. S. MACGREGOR.
NEW YORK, 1919.

vii





CONTENTS
PAQB

INTRODUCTION vii

PART I

Structure of the Airplane
CHAPTER

I. The Wings 1

II. The Control Surfaces 19

III. The Fuselage 37
IV. The Landing Gear 44

V. The Engine 51

VI. The Propeller 72

PART II

VII. Elements of Aerodynamics 87

VIII. The Glide 102

IX. Flying with Power On 115

X. Stability and Maneuverability 134

XI. Flying in the Wind 151

PART III

XII. Problems of Efficiency . 161

XIII. The Speed . 167

XIV. The Climbing 188

XV. Great Loads and Long Flights 204

PART IV

Design of the Airplane

XVI. Materials 221

XVII. Planning the Project 261

XVIII. Static Analysis of Main Planes and Control Surfaces .... 276

XIX. Static Analysis of Fuselage, Landing Gear and Propeller. . . 324

XX. Determination of the Flying Characteristics 358

XXI. Sand Tests Weighing Flight Tests . . \ , . . 379

INDEX. . - 401

IX





ACKNOWLEDGMENT
The author desires to express his sincere thanks to Mrs.

Lester Morton Savell for her valuable assistance in matters

pertaining to English and to Mr. Garibaldi Joseph Piccione

for his intelligent assistance in drawing the diagrams.
0. P.

XI





AIRPLANE DESIGN
AND

CONSTRUCTION

PART I

STRUCTURE OF THE AIRPLANE

CHAPTER I

THE WINGS

While for birds, and in general for all animals of the air,

wings serve to insure both sustentation and propulsion,
those of the airplane are used solely to provide the means
of sustaining the machine in the air.

The phenomenon of sustentation is easily explained. A
body moving through the air produces, because of its mo-

tion, a disturbance of the atmosphere which is more or less

pronounced and complex in character. In the final analy-

sis, this disturbance is reduced to the formation of zones

of positive and negative pressures. The resultant of these

pressures may then be classified into its three components :

1. Vertical or sustaining force, called Lift,

2. Horizontal component parallel and opposite the line

of flight, called Drag, and
3. Horizontal component perpendicular to the line of

flight, called Lateral Drift.

The vertical component may be positive or negative.

An example of the negative component is found in the

elevator used for the climbing maneuver of an airplane,

as will be shown later.

l



AND CONSTRUCTION

The horizontal component parallel to the line of flight,

is always negative; i.e., it tends to retard the motion of

the body.
" Conservation of energy"

1
is the principle

underlying this phenomenon.
The horizontal component perpendicular to the line of

flight is called the force of "drift," because it tends to

make the body drift from the line of flight. This compo-

nent, generally not existing in normal flight, is of great

importance in the directional maneuvers of airplanes.

For a body having a plane of symmetry and moving

through space so that the line of flight is contained in that

plane, the force of drift is zero and the only components

acting are the lift and the drag.

Observations made of birds' wings and results based

upon the experiences of experimenters in aeronautics, have

demonstrated the possibility of devising surfaces of such

form that by properly moving them through the air they
create reactions, of which the vertical component has a far

greater magnitude than the horizontal.

Thus, a surface capable of developing high values of lift

with small values of drag is called a wing.
In actual practice, as will be shown further on in a more

detailed study of aerodynamical principles (Chapter 7), the

value of the ratio ^ varies from 15 to 23. This means

that wings may be built, which, for every 23 Ib. of load

carried, offer a resistance to motion of but 1 Ib. It is

natural, then, that designers direct all efforts toward in-

creasing theg^ ratio, which is used to define the efficiency

of the wing. Three factors influence such efficiency:

the profile of the wing section,

the ratio of the wing span to its depth or chord (called
the Aspect Ratio), and

1 This principle states that energy can be neither created nor destroyed.
If the horizontal component were positive, perpetual motion would ensue,
since it would be necessary only to furnish the initial force to set the body in

motion. The body would then continue in its path without further applica-
tion of energy.
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the relative position of the wings (in multiplane ma-

chines).

The profile of a wing section is its major section at right

angles to the span of the wing. Because of the simplicity

of modern construction, wings are generally built with

Back

FIG. 1,

a constant section throughout the span. In the early

days of aeronautics, however, many types of wings were

built with a variable wing section, but the aerodynamical

advantages derived from their use were never sufficient to

compensate for the complicated construction required.

In the profile of a wing, there are the following distinct

elements (Fig. 1): leading edge, back, bottom and trailing

edge. The proper use of these elements makes it possible

to obtain the highest values of the
j^ ratio, as well as to

vary the Lift 'coefficient according to the load to be carried

per square foot of wing surface.

Line of

FIG. 2.

The angle between the wing chord and the line of flight,

called the angle of incidence of the wing (Fig. 2), may vary
between greater or smaller limits. As a result, the distri-

bution and value of the positive and negative pressures

will vary, and give different values of Lift, Drag and ^
The laws of variation of these factors are rather complicated

and cannot be expressed by means of formulae. It is pos-

sible, however, to express them by means of curves as
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illustrated in Figs. 3 and 4. These illustrate the laws of

variation for the values of the Lift, Drag and^ coeffi-

cients for two types of aerofoils, which, although having the

same lengths of chord, differ in other elements.

It is now necessary to introduce a new factor, namely,

the speed or velocity of translation of the wing.

All aerodynamical phenomena, when considered with

respect to speed, follow the general law that the intensity

of the phenomenon increases not in proportion to the speed,

but to the square of the speed. This is accounted for by
the fact that for redoubled speed not only is the velocity

of impact of air molecules against the body moving in the

air redoubled, but so also is the number of molecules that

are struck by the body. Consequently it is seen that the

intensity of the phenomenon is quadrupled.

Assuming a wing with an area of A square feet, the fol-

lowing general equations may be written:

L = X X A X V*\
D = d X A X V 2

J

where

L = total Lift for area A in pounds
D = total Drag for area A in pounds
V speed of translation in miles per hour

(m.p.h.).

In practice it is convenient to refer the coefficients X and
5 to the velocity of 100 m.p.h., whence the equation (1)

becomes
7 \2 1

If A.
= 1 sq. ft., and V = 100 m.p.h., then

Li = X
(3)

that is, X is the load in pounds carried by a wing with an
area of 1 sq. ft. and moving at a velocity of 100 m.p.h.,
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and 5 the head resistance in pounds for a wing with an

area of 1 sq. ft. and moving at a velocity of 100 m.p.h.

Knowing X and 5, by using equation (2) the values of L and

D may be found for any area or any speed. Also, the

ratio - is equal to 7. which is obtained by dividing the L
5 D

equation by the D equation.

Now, the coefficients X and 8 may assume an entire

series of varied values by changing the angle of incidence

of the wings. Figs. 3 and 4 show the laws of variation

of X, 5 and - for two different types of wings to which we

will refer as wing No. 1 and wing No. 2.

An examination of the diagrams is instructive because it

shows how it is possible to build wings which may have

totally different values of Lift, the speed being the same for

both wings. For example, at an angle of incidence of 3,

wing No. 1 gives X = 11.8, while wing No. 2 gives X = 17.6;

in other words, with equal speeds, wing No. 2 carries

a load 49 per cent, greater than wing No. 1.

The laws of variation of X and 5 depend upon the several

elements of the wing, namely, the leading edge, top, bottom

and trailing edge. Let us consider separately the function

of each of these elements:

Actually, the function of the leading edge is to penetrate

the air and to deviate it into two streams, one which will

pass along the top and the other which will pass along the

bottom of the wing. In order to obtain a good efficiency

it is necessary that this penetration be made with as little

disturbance as possible, in order to prevent eddies. Eddies

give rise to considerable head resistance and are therefore

great consumers of energy. For that reason, the leading

edge should be designed with the same criterions as those

adopted in the design of turbine blades. Figs. 5 and 6

show the phenomenon schematically. Due to inertia,

the air deviated above the wing tends to continue in its
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rectilinear path, thus producing a negative pressure or

vacuum on top of the wing. This negative pressure exerts

a centripetal force on the air molecules, tending to deflect

FIG. 5. Loading edge of good efficiency.

their path downward so as to flow along the top curvature

of the wing. A dynamic equilibrium is thereby established

between the negative pressure and the centrifugal force of

FIG. G. Leading edge of poor efficiency.

the various molecules (Fig. 7). It is obvious, then, that

the top curvature has a pronounced influence not only upon

the intensity of the vacuum, but also on the law of negative

pressure distribution along its entire length.

POSITIVE PRESSURE.

FIG. 7.

The air deviated below the wing tends instead, also due

to inertia, to condense, thus producing a positive pressure

which forces the air molecules to follow the concairty of
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the bottom curvature. Because of this change in the direc-

tion of velocities, a centrifugal force is developed which is

in dynamic equilibrium with the positive pressure produced

(Fig. 7).

Curves showing the laws of distribution of the positive

and negative pressures are given in Fig. 8. The resultant

FIG. 8.

of these pressures represents the value -T-- It will be noted

that the portion of the sustentation due to the vacuum
above is much greater than that due to the positive pressure

below. In the case under consideration, it is 2.9 times

greater, and equal to 74 per cent, of the total Lift. There-

fore, the study of the top curvature must be given more
careful consideration than that of the bottom curvature, as

a wing is not at all defined by the bottom curvature alone.

In practice, the means adopted to raise the value of X is
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to increase both the convexity of the top and the concavity
of the bottom of the wing, thereby increasing the intensi-

ties of the negative and positive pressures.
The trailing edge also has its bearing on the efficiency.

Its shape must be such as to straighten out the air stream-
liness when the air leaves the wing, affecting a smooth,
gradual decrease in the negative and positive pressures

FIG. 9. Trailing edge of good efficiency.

until their difference becomes zero. In this manner, the

formation of a wake or eddies behind the wing, with the

resulting losses of energy, is avoided (Figs. 9 and 10).

In brief, for good wing efficiency, it is primarily necessary
for the leading and trailing edges to be of a design which will

avoid the formation of eddies, and in order to obtain a

higher value of the Lift coefficient X the top and' bottom

curvatures must be increased.

FIG. 10. Trailing edge of poor efficiency.

From the foregoing it is easy to understand the impor-
Of

tance of the ratio
^;

that is, the relation between the span

S and the chord C of a wing.

Considering the front view of a wing surface, Fig. 1 1
,
which

represents a section parallel to the leading edge, and shows

the mean negative and positive pressure curves for the top

and bottom of the wing, it will be seen that while in
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the central part the curves are represented by lines parallel

to the wing, at the wing tips A and B, they suffer serious

disruption, for at the end of the wing a short circuit between

the compression and depression occurs. This is due to the

air under pressure rushing toward the vacuum zone, thus

establishing an air flux (the so-called marginal losses), with

the result that at the wing tips the average pressure curves

come together, and the Lift is decreased considerably,

thus lowering the value X of the wing. It is necessary to

Negative Pressure.

Positive Pres&ure.

fir c"~~

FIG. 11.

reduce the importance of this phenomenon to a minimum,
which is done by increasing the ratio of the span to the

(Cf\
r*)W

Assume, as it is sometimes done in practice, that the

disruption in the average curves due to marginal losses

extends for a distance AC and BD, equal to the chord of

the wing; and also that the diagram is modified according
to a linear law. This is equivalent to assuming a decrease in

the Lift measured by the triangles AA'C', AA"C", BB'D'
and BB" D". The same result is obtained as though the

average X remained constant and the lifting surface were re-

duced by the amount c 2
,
which means that the total surface

would be reduced by sXc c 2
. If the product sXc is kept

constant by increasing s and diminishing c correspondingly,
the importance of the term c is greatly decreased. The loss is

expressed by - = -> that is, by the inverse of the ratio
s X c s
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span
chord

So it is seen that by increasing the ratio > the
c

average value of the coeffi-

cient of Lift is increased, and

it is therefore advantageous
to build wings of large spread.

In practice, however, there is

a limit beyond which this ad-

vantage becomes a minimum,
and there are also static and

structural problems to be con-

sidered which limit the value

of the ratio
c

In modern

FIG. 12.

machines, this value varies

from 5 to 12, and even more.

In biplanes, triplanes and

multiplanes, another very im-

portant problem is presented ;

that of the mutual interference of each plane upon the

others. In view of the close arrange-

ment of the surfaces necessitated by
structural considerations, and the

high values of their negative and

positive pressures of air, a conflic-

tion of air flow is formed over the

entire wing surface, with the result

that the value of the Lift coefficient

is lowered. Figs. 12 and 13 illus-

trate this phenomenon for a biplane

and triplane respectively. In the

case of the biplane, the following

effects ensue:

1. Decrease in vacuum on top of

lower plane, and

2. Decrease in positive pressures

on bottom of upper plane.
FIG. 13. Triplane system. jn ^he cage Qf ^e triplane, the

losses are still greater, due to
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1. Decrease in vacuum on top of bottom plane,

2. Decrease in positive pressures on bottom of inter-

mediate plane,

3. Decrease in vacuum on top of intermediate plane, and

4. Decrease in positive pressures on bottom of upper

plane.

It is thus seen how undesirable, from an aerodynamical

point of view, the triplane really is. At the present time,

however, the triplane is not a common type of airplane, so

the discussion here will be limited to the biplane.

Another important ratio in aeronautics is the unit load

on the wings, or the number of pounds carried per square
foot of wing surface. Theoretically this value may vary
between wide limits; for example, for wing No. 2 set at an

angle of 6 and moving at a speed of 150 miles an hour, the

ratio is 51 Ib. per sq. ft. In practice, however, that value

has never been reached. Special racing airplanes have
been built whose unit loads were as high as 13 Ib. per

sq. ft., but the principal disadvantages of such high unit

loads are the resulting high gliding and landing speeds, and
an appreciable loss in maneuverability. For this reason

designers strive to confine the unit load between the limits

of 6 and 8 Ib. per sq. ft.

Consider a biplane with a chord and gap each of 6 ft.

with a unit load equal to 8 Ib. per sq. ft. Keeping in mind
what has been previously stated (Fig. 8), it can be as-

sumed that the values of positive and negative pressures

(vacuum) found at the top and bottom of both wings would
be equal to 2 Ib. per sq. ft. and 6 Ib. per sq. ft. respectively,

provided, of course, that the two wing surfaces had no effect

on each other. Now, if a difference in pressure of 8 Ib.

per sq. ft. is produced between two points in the air at a

distance of 6 ft. from each other, the air under pressure

rushing violently to fill up the vacuum will result in a veri-

table cyclone in the intervening space.
When a wing is in motion, condensed and rarefied

conditions of the air are being constantly produced, so that
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a certain dynamic equilibrium ensues. In order to study

the phenomenon more closely, a few brief computations will

be made.

Again consider the type of wing curve whose characteris-

tics are given in Fig. 3, and assume that it is to be adopted
for a biplane. In such a case, the curves in Fig. 3 are no

longer applicable and new curves must be determined

experimentally, since the aerodynamical behavior of the

wing shown in Fig. 3 will change for every one of the three

following conditions:

1. Acting alone, as for a monoplane,
2. Serving as the upper plane of a biplane structure, and

3. Serving as the lower plane of a biplane structure.

Fig. 14 gives the characteristics for wing No. 1 serving as a

lower plane. Considered as an upper plane, the aerody-
namical curve is practically the same as that in Fig. 3.

Fig. 15 gives the characteristics of a complete biplane

whose upper and lower planes are similar.

Compare now a monoplane having a wing surface of 200

sq. ft., possessing the type of wing mentioned above, with

a biplane also having the same wing section, and whose

planes are each 100 sq. ft. in area. Assume each machine
to carry a load of 1500 Ib. at a speed of 100 miles per hour.

The problem then is to find the values of the angles of inci-

dence and the thrust efforts required to overcome the Drag.
From the equation

Since

L == 1500 Ib. and
A --= 200 sq. ft.,

then

1500 _
r

200
:

which value of X gives, for the monoplane (Fig. 3),

i = 1

d = 0.415

D = 0.415 X 200 - 83 Ib.
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and for the biplane (Fig. 17),

i = 1 45'

d = 0.450

D = 0.450 X 200
: - 90 Ib.

In the case of the biplane ^ is seen to be 12 per cent, smaller

than in the case of the monoplane. The thrust required is

8 per cent, greater, therefore 8 per cent, more H.P. is re-

quired to move the wing surfaces of this biplane than that

necessary to move a similar wing in the monoplane structure.

However, the final deduction must not be made that a bi-

plane requires 8 per cent, more power than the monoplane
of equal area. The power absorbed by the wing system is

really only about 25 per cent, of the total H.P. required by
the machine, so that the total loss due to the employment
of a biplane structure is 8 per cent, of 25 per cent., or 2

per cent.

Of late, the biplane structure has almost entirely sup-

planted that of the monoplane, due largely to the great

superiority, from a structural point of view, offered

by a cellular structure over a linear type. For lifting

surfaces of equal areas, the biplane takes up much less ground
space and is much lighter than the monoplane. Regarding

the former, the
r~~g

ratio being the same, the span of

the biplane is only 0.71 that required by the monoplane.
As to weight, it is to be noted that a wing structure

usually consists of two or more main beams called wing

spars, running parallel to the span. Wing ribs, constructed

to form the outline of the wing section, are fitted to the

spars. The junction of the wings to the body or fuselage

of a machine is made by means of the spars, which are

the main stress-resisting members of the wing. The

spars of monoplane wings are fixed or hinged to the

fuselage and braced by steel cable rigging (Fig. 16). In the

biplane, instead, the corresponding spars of both upper and
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lower planes are held together by struts and cross bracing,

forming a truss (Fig. 17).

For those familiar with the principles of structures it is

easy to see the great superiority of the biplane structure

over the monoplane structure in stiffness and lightness,

and the impossibility of monoplane structure in large

machines because of its excessive weight.

FIG. 16.

Wing structure is becoming more and more uniform for

all types of airplanes. As already pointed out, the frame

consists of two or more spars on which the ribs are fitted

(Fig. 18). A leading edge made of wood connects the front

extremities of the ribs, while for the trailing edge a steel

wire or wood strip is used. The spars are also held together

by wooden or steel tube struts and steel wire cross bracing,

the function of which is to stiffen the wing horizontally.

The rib is usually built up with a thin veneer web, to which

strengthening flanges are glued and nailed or screwed

(Fig. 19). The spars are usually of an I,[ or box section for

lightness (Fig. 20).

The vertical struts between the upper and lower wings
of a biplane may be either of wood or steel tubing. In
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either case, they must have a streamline section to reduce
to a minimum their head resistance. Wood struts are often
hollowed to obtain lightness. Many different systems of

Angle Strut:'

Box. Section
">

End Rib.

End Fitting -For

ConnectingSpar,, >g
to the Fuselage:''""

tr
Intermediate
I"Section Rib...

Trailing Edge.

Inferior

Wing Trussing Strut

RearSpar,

FIG. 18.

Interior Steel Wire Cross
Bracing.

SECTION A-B
(ENLARGED)

FIG. 19.

FIG. 20.

attaching the struts and cables to the spars are used, and

some of the many possible methods are shown in Fig. 22.

The wing skeleton is covered with linen fabric, attached

by sewing it to the ribs, and tacking or sewing it to the
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leading and trailing edges. It is then given an application

of special varnish, called "dope," which stretches it and

makes it air tight. The surface is then finished with bright

SECTION
A-B(ENLARGED)

FIG. 21.

FIG. 22.

waterproof varnish, which leaves the fabric smooth so as

to reduce frictional losses to a minimum, thereby detract-

ing as little as possible from the efficiency.



CHAPTER II

THE CONTROL SURFACES

In studying the directional maneuvers of an airplane,

reference must be made to its center of gravity (C.G.) and to

its three principal axes. Two of the axes are contained in

the plane of symmetry of the machine while the third is

normal to this plane. One of the two axes in the plane is

parallel to the line of flight while the other is perpendicular
to it.

By a known principle of mechanics, every rotation of the

machine about its C.G. may be considered as the resultant

of three distinct rotations, one about each of the three

principal axes. On the other hand, if three systems of

control are used, each capable of producing a rotation of

the airplane about one of its principal axes, any rotation

of the machine about its C.G. can be brought about or

prevented.

The principal axis perpendicular to the plane of sym-

metry, is called the pitching axis. Rotations about that

axis are called pitching movements. The devices used to

bring about, or prevent a pitching movement are called

devices of longitudinal stability.

The axis perpendicular to the line of flight, in the plane

of symmetry is called the axis of direction of flight. The

devices which cause or prevent movements about that axis

are called devices of directional stability.

The axis parallel to the line of flight is called the rolling

axis, and the devices causing or preventing rolling move-

ments are called devices of lateral stability.

There are usually two surfaces which control longitudinal

stability, one fixed, called the stabilizer or tail plane, and

the other movable, called the elevator.

<The stabilizer or tail plane is a relatively small surface

fixed at the rear end of the fuselage. Its function is, first

19
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of all, to offset or even completely invert the phenomenon
of the inherent instability of curved wings, and secondly,

to act as a damper on longitudinal or pitching movements.

The stabilizer may be of various shapes and sections.

It may be either lifting or non-lifting, but it must always

satisfy the basic condition that its unit loading per sq. ft.

be lower than that of the principal wing surface. Under

this condition only, will it act as a stabilizer; otherwise it

would add to the instability of the wings.

As to the proper dimensions of the stabilizer, they depend
on various factors such as the weight of the airplane, its

longitudinal moment or inertia, its speed, and the distance

the stabilizer is set from the center of gravity of the

machine. Moreover, the proportions of the stabilizer with

respect to the other parts of the airplane are also dependent
on another factor: the type of airplane. For small, swift

combat machines which require a high degree of maneuvera-

bility, the stabilizer will require relatively less surface

than that required for large, heavily loaded machines, such

as those used for bombing operations and requiring a much
lower degree of maneuverability.

The framework or skeleton of the stabilizer is generally

of wood or steel tubing. In general its angle of incidence

may be adjusted either on the ground or while in flight.

However, that incidence must never be greater than the

angle used for the main wing surfaces. Its value is gen-

erally 1 to 4 less than that of the wings.
'C The elevator or movable surface is hinged to the rear

edge of the stabilizer, and it may be raised or lowered

while in flight.

In normal flight the elevator is set parallel to the air

flow so that there is no air reaction on its faces. If it is

swung upward or downward the air will strike it, producing
a reaction whose direction is upward or downward respec-

tively, thus tending to set the machine for climbing or

descending.

The size of the elevator also depends on the weight,
moment of inertia, speed of the machine, and on its dis-
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tance from the center of gravity of the machine; also the

type of airplane and the service for which it is intended must
be given consideration. However, for quick and responsive
machines the elevator must be proportionally larger than

FIG. 23.

for slow machines endowed with a greater degree of stabil-

ity. In other words, the two proportions vary inversely

as those of the stabilizers. However, this will be

more easily understood upon considering the functions of
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the two devices which are in a certain sense^ completely

opposite.

The function of the stabilizer is to insure longitudinal

stability, just as its name implies. The elevators function

instead, is to disturb the equilibrium of the machine in

order to bring about a change in the normal flying. An

outline of a type of stabilizer and elevator system is

given in Fig. 23.

A closer study may now be made of the function of these

two parts of longitudinal stability. First of all, examina-

tion will be made of the mechanism by which the stabilizer,

when properly set, exercises its stabilizing property.

When, in an airplane, the incidence of the wing is changed

with respect to the air, through which it is progressing, the

air reaction will not only vary in intensity but also in loca-

tion. If the new reaction is such as to antagonize the

deviation, the airplane is said to be stable; otherwise it is

said to be unstable.

Wings having curved profiles, when acting alone, are un-

stable. Laboratory experiments have shown that for a

wing with a curved profile, the reaction moves forward as

the incidence is increased, and vice versa; thus the reaction

moves in such a way as to aggravate the disturbance. The

point of intersection of the air reaction on the wing chord is

called the center of pressure of the wing (Fig. 24) . The

location of the center of thrust is usually indicated by the

/p
/>

ratio The curves for X and for - as functions of the
c c

angle of incidence for a given wing section, are shown in

Fig. 25. By applying the data from these curves to a wing of

5 ft. chord and 40 ft. span, supposing the normal speed to

be 100 m.p.h. and the normal angle of flight 2, the wing

loading will be

L = 7.3 X 200 = 1460 Ib.

and it will be in equilibrium if the center of gravity of the

load falls at a distance of 40 per cent, of the chord, or 2

ft. from the leading edge. Suppose now that the inci-
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dence is increased from 2 to 4, then the sustaining force

becomes

L = 10 X 200 - 2000 Ib.

Center of Pressure.

C -
'

FIG. 24.
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and it will be applied at 37 per cent, of the chord, or 1.85

ft. from the leading edge; this result will then produce

around the center of gravity, a moment of

2000 X 0.15 = 300 ft. Ib.
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and such moment will tend to make the machine nose up;

that is, it will tend to further increase the angle of inci-

dence of the wing. Following the same line of reasoning for

a case of decrease in the angle of incidence, it will be found

in that case that a moment is originated tending to make the

machine nose down. Therefore, the wing in question is

unstable.

A practical case will now be considered, where a stabil-

izer is set behind this wing, and constituted of a surface of

15 sq. ft. (2 X 7.5) set in such a manner as to present an

angle of 2 with the line of flight when the wing in front

presents an angle of + 2. In normal flight there is

1. The sustaining force of the main wing, equal to

Ls
= 7.3 X 200 = 1460 Ib.

2. The center of pressure of the main wing located at

0.40 X 5 = 2 ft. from the leading edge,

3. The sustaining force of the elevator equal to

La
= 2 X 15 = 30 Ib., and

4. The center of pressure of the elevator located at

0.44 X 2' = 0.88 ft. from its leading edge.

Suppose now that the incidence of the machine is in-

creased so that the angle of incidence of the front wing

changes from +2 to +5, then there is

1. The sustaining force of the main wing equal to

L. = 11.30 X 200 = 2260 Ib.

2. The center of pressure of the main wing located at

0.355 X 5' = 1.78 ft.,

3. The sustaining force of the elevator equal to

Ls
= 6.05 X 15 = 91 Ib., and

4. The center of pressure of the elevator located at

0.410 X 2' = 0.82 ft. from its leading edge.

With these values, the total resultant of the forces acting

in each case is obtained, and it is found that while in nor-

mal flight, the moment of total resultant about the e.g. of

the machine is equal to zero
;
when the incidence is increased
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to 5, that moment becomes equal to 2351 X (2.71/ 2.44')
= 645 ft. Ib. tending to make the machine nose down;
that is, tends to prevent the deviation and therefore is a

stabilizing moment (Fig. 26).

In analogous manner it can be shown that if the incidence

of the machine is decreased, a moment tending to prevent

\De
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due to the stabilizer. This will allow the machine to assume

a complete series of angles of incidence, enabling it to

maneuver for climbing or descending.

There are also usually two parts controlling directional

stability; one fixed surface called the fin or vertical stabilizer,

and one movable surface called the rudder.

Consider, for example, an airplane in normal flight; that

is, with its line of flight coincident with the rolling axis

FIG. 27.

(Fig. 27). In this case there is no force of drift, but if

for some reason the line of flight is no longer coincident

with the rolling axis, a force of drift is developed (Fig. 28),

whose point of application is called center of drift. If

this center is found to lie behind the center of gravity, the

machine tends to set itself against the wind; that is, it

becomes endowed with directional stability. If, instead,
the center of drift should fall before the center of gravity,
normal flight would be impossible, as the machine tends to
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turn sharply about at the least deviation from its normal
course. In practice, since the center of gravity of an air-

plane is found very close to the front end of the machine,
the condition of directional stability is easily attained by
the use of a small vertical surface of drift which is set

at the extreme rear of the fuselage. This surface is called

the fin or vertical stabilizer.

There is, however, a type of airplane called the Canard

FIG. 28.

type, in which the main wing surface is the one in the rear,

(and consequently the e.g. falls entirely in the rear) and

in which the problem of directional stability presents

considerable difficulty. This type of airplane, however, is

not used at the present time.

A machine provided with only a fin would possess good

directional stability, but for that very reason it would be

impossible for the airplane to change its course. For that

reason it is necessary to have a rudder; a vertical movable
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surface, which, when properly deviated, will produce a

balancing moment to overcome the stabilizing moment of

the fin, thus permitting a change in the course of the drift.

The phenomenon may now 'be studied more in detail.

Let us suppose that the directing rudder is deviated at an

angle; this deviation will then provoke on the rudder a

reaction D' (Fig. 29), which will have about the center of

gravity a moment D'Xd'; as a result, the airplane will

FIG. 29.

rotate about the axis of direction and the line of flight will

no longer coincide with the rolling axis; that is, when the

airplane starts to drift in its course, a drifting force D" is

originated, which tends to stabilize, and when D" X d" =
D' X d', equilibrium will be obtained. Obviously, then, the

line of flight will no longer be rectilinear, since the two forces

D" and D' are unequal, and if transported to the center of

gravity they will give a resultant D = D" D f

other than

zero. The equilibrium will be obtained only if the line of
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flight becomes curvilinear; in fact, a centrifugal force $ is

then developed which will be in equilibrium with the re-

sultant force of drift D. Then equilibrium will be obtained
when <J>

' =
Z); as

where W is the weight of the airplane, g the acceleration due
to gravity, V the velocity of the airplane and r the radius

of curvature of the line of flight, therefore

from which is obtained

.E X Z!__E X _!!_
'

g
' v D

'

g
A D" - D'

From this equation it will be seen that to obtain remarkable

maneuverability in turning, the difference D" D' must
have a large value. Or, since

_

D'
"

d"

it is necessary that the center of drift, although being in the

rear of the center of gravity, must be not too far behind it,

and it is necessary that the rudder be located at a consider-

able distance from the center of gravity. In other words,

for good maneuverability, an excessive directional stability

must not exist. The foregoing applies to what is called a

flat turn without banking, which is analogous to that of a

ship. The airplane, however, offers the great advantage of

being able to incline itself laterally which greatly facilitates

turning, as will be shown when reference is made to the

devices for transversal stability.

In summarizing the foregoing, it is seen that in addition

to the fixed surfaces, stabilizer and fin, whose functions are

to insure longitudinal and directional stability, airplanes

are provided with movable surfaces, elevator and rudder,

which are intended to produce moments to oppose the

stabilizing moments of the fixed devices. It will now be



30 AIRPLANE DESIGN AND CONSTRUCTION

better understood that excessive stability is contrary to

good maneuverability.

In like manner, for transversal stability, there are two

classes of devices opposite in their functions. Some are

used to insure stability while others serve to produce
moments capable of neutralizing the stabilizing moments.

Let us consider an airplane in normal flight, and suppose

that a gust of wind causes the machine to become inclined

laterally by an angle a. The weight W and the air reaction

L will have a resultant Dn which will tend to make the

machine drift (Fig. 30) ;
this drifting movement will produce

a lateral air reaction Da acting in the direction opposite
to Da . The resultant of the lateral wind forces acting on
the machine is Da . If this reaction is such as to make
with the force Da a couple tending to restore the machine
to its original position, the machine is said to be transver-

sally stable; this is the case shown in Fig. 30. If Da has

the same axis as Da ,
the airplane is said to have an indif-

ferent transversal stability. If, finally, Da and Da form
a couple tending to aggravate the inclination of the machine,
the latter is said to be transversally unstable.

Consequently, in order to have an airplane laterally

stable, conditions must be such that the lateral reaction

Da together with the force Da form a stabilizing couple;
that is, the point of application of the force Da must be
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situated above the point of application of force Da ,
which is

the center of gravity. However, the couple of lateral

stability must not have an excessive value, as it would

decrease the maneuverability to such an extent as to make
the machine dangerous to handle, as will now be explained.

It has been explained before how a turning action may
be obtained by merely narrowing the rudder, and how

FIG. 31.

this cannot be actually done in practice since there is a

possibility of the machine banking while turning. Now,

when the airplane
"
banks," the forces L and W will admit

a lateral resultant Da which tends to deviate laterally the

line of flight. A centrifugal force $ is thereby developed,

tending to balance the force Da and equilibrium will obtain

when $ = Da (Fig. 31); that is, when
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where r is the radius of curvature of the line of flight;

therefore

W V 2

M?- X T
which will give

r _. w_ x Z!
g Da

As Z)a
= IF tan a, we obtain

1 F 2

r = -
tan a

This equation shows that the turn can be so much sharper

as the speed is decreased, and the angle a of the bank is

increased. This explains why pilots desiring to turn

sharply, make a steep bank and at the same time nose the

machine upward in order to lose speed.

Now the angle of bank may be obtained in two ways ; by
operating the rudder or by using the ailerons which are

the controls for lateral stability. In using the rudder,

it has been observed that the machine assumes an angle of

drift. If the force of drift D = D" - D' (Fig. 29) passes

through the center of gravity, a flat turn without banking
will result. If force D passes below the center of gravity,

the airplane will incline itself so as to produce a resultant

Da of L and W, in a direction opposite to force D. Then
the total force of drift is equal to D Da . This case is

of no practical interest, since it corresponds to the case

of lateral instability, which is to be avoided. If, instead,

force D passes above the center of gravity, then the angle
of bank a is such that Da is of the same direction as D.

Therefore, the total force of drift is D + Da .

Now if force Da had its point of application too far above
the center of gravity, the result would be that with a slight

movement of the rudder, a strong overturning moment
would develop which would give the machine a dangerous
angle of bank. Therefore it is evident that an excessive

stabilizing moment must be avoided.
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The ailerons are two small movable surfaces located at

the wing ends (Fig. 32) . Let us now observe what happens
when they are operated.

The ailerons are hinged along the axes AA and BB'
',

and are controlled in such a manner that when one swings

upward the other swings downward. With this inverse

movement, the equity of the sustaining force on both the

FIG. 32.

right and left wings, is broken. Thus a couple is brought

into play which tends to rotate the machine about the rolling

axis. Since it is possible to operate the ailerons in either

direction, the pilot can bank his machine to the right or

to the left.

Supposing that the pilot operates the ailerons so that the

machine banks to the right; let a be the angle of bank;

then, a force Da is produced, which, in a laterally stable

machine will tend to oppose the banking movement caused
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by the ailerons. The rapidity of turning, and consequently

the mobility of the machine, will increase in proportion as

the rapidity of the banking movement increases. Now, all

other conditions being similar, the rapidity with which the

machine banks is proportional to the difference of the couple

due to the actions of the ailerons, and the couple due to the

force of drift
;
if the value of the latter is very large (that

FIG. 33.

is, if Da is applied very far above the center of gravity)

the maneuver will be slow. Therefore for good mobility

of the airplane, the force Da must not be too far above

the center of gravity.

The foregoing considerations show the close interdepend-

ency existing between the problems of directional stability

and those of transversal stability. It is practically possible

FIG. 34.

to control directional stability by means of the lateral con-

trols, and vice versa. For 'example, birds possess no means
of control for directional stability alone, but use the motion
of their wings for changing the direction of their flight.

To raise the force Da with respect to the center of gravity,
we may either install fins above the rolling axis, or, better

still, give the wings an upward inclination from the center
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to the tip of the wing, the so-called dihedral angle (Fig. 33).

The effect of this regulation is that when the machine takes an

angle of drift, the wing on the side toward which the machine

drifts, assumes an angle of incidence greater than the inci-

FIG. 35.

dence of the opposite wing, thereby developing a lateral

couple which is favorable to stability.

^The framework of the ailerons is usually of wood, steel

tubing or pressed steel members. An outline of wood ailer-

ons is given in Fig. 34.

FIG. 36.

Concluding to be relatively safe and controllable at the

same time, an airplane must be provided with devices which

will produce stabilizing couples for every deviation from

the position of equilibrium; but these couples must not be
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of excessive magnitude, for the machine would then be

too slow in its maneuvers, and consequently dangerous in

many cases. These stabilizing couples must be of the

same magnitude as the couples which can be produced by
the controlling devices. In this manner the pilot always
has control of the machine and it will answer readily and

effectively to his will.

The system of control of maneuvering by the pilot usu-

ally consists of a rudder-bar operated by the feet, and a

hand-controlled vertical stick (called the "joy stick") piv-

UNBAUANCED RUDDER

IA

BALANCED RUDDER

FIG. 37.

oted on a universal joint, moved forward and backward to

lower and raise the elevator, and from left to right to move
the ailerons (Figs. 35 and 36).

Balanced rudders are found on some of the high-powered

machines, as they reduce, to a slight degree, the muscular

effprt_of the pilot.^ The effort required to move a control

surface Depends on the distance h (Fig. 37) between the

center of pressure C and the axis AB of rotation. If axis

AB is moved to A'B'
',
the value of h is reduced to h', and

therefore the required effort for the maneuver is decreased.



CHAPTER III

THE FUSELAGE

The fuselage or body of an airplane is the structure usu-

ally containing the engine, fuel tanks, crew and the useful

load. The wings, landing gear, rudder and elevator are all

attached to the fuselage. The fuselage may assume any
one of various shapes, depending on the service for which

the machine is designed, the type of engine, the load, etc.

In general, however, the fuselage must be designed so as

to have, as nearly as possible, the shape of a solid offering

a minimum head resistance. In the discussion on wings,

it was observed that the air reaction acting on them is gen-

erally considered in its two components of Lift and Drag.
For a fuselage moving along a path parallel to its axis, the

Lift component is zero, or nearly so; the Drag component
is predominant, and must be reduced to a minimum in

order to minimize the power necessary to move the fuselage

through the air.

Let S indicate the major section of the fuselage, and V
the velocity of the airplane. Laboratory experiments have

shown that head resistance is proportional to S and V2
.

Assuming our base speed as 100 m.p.h. for a given' fuselage,

then

. R = KXSx(^)
2

(1)

therefore, if S = 1 and V = 100, then R = K. Thus the

coefficient K is the head resistance per square foot of the

major section of the fuselage, when V = 100 m.p.h. This

is called the coefficient of penetration of the fuselage. The

lower K is, the more suitable will be the fuselage, as the

corresponding necessary power will be decreased.

Equation (1) shows two ways of decreasing the necessary

power;

(a) By reducing the major section of the fuselage to a

minimum, and (6) by lowering the value of. coefficient K as

much as possible.
37
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In order to solve problem (a) it is necessary first to adapt
the section of the fuselage to that of the engine. The

FIG. 38.

fuselage may be of circular, square, rectangular, triangular,

etc., section, so designed that its major section follows the

form of the major section of the engine. In

the second place, it is good practice, when other

reasons do not prevent it, to arrange the various

masses constituting the load (fuel, pilot, pas-

sengers, etc.) one behind the other, so as to keep
the transversal dimension as small as possible.

To decrease the coefficient of head resistance,

the shape of the fuselage must be carefully

designed, especially the form of the bow and

stern. Analogous to that of the wings, the

phenomenon of head resistance of the fuselage

is due to the resultant of two positive and

negative pressure zones, developing on the

forward and rear ends respectively (Fig. 38).

Whatever be the means employed to reduce

the importance of those zones, the value of K
will be lowered, thus improving the penetration
of the fuselage.

To improve the bow, it must be given a shape
which \plL as nearly as possible approach that of

the nose of a dirigible. This is easily affected

with engines whose contours are circular, but

the problem presents greater difficulties with

vertical types of engines, or V types without

reduction gear. Sometimes a bullet-nosed colwing is

fitted over the propeller hub, fixed to and rotating with

FIG- 39.
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the propeller. Its form is then continued in the front end
of the fuselage contour, its lines gradually easing off to

meet those of the fuselage (Fig. 39).

To improve the stern of the fuselage it must be given a

strong ratio of elongation, and the shaping with the rest of

the machine must be smoothly accomplished. A special

advantage is offered by the reverse curve of the sides; in

fact, in this case, a deviation in the air is originated in the

zone of reverse curving (Fig. 40) tending to decrease the

pressure, and consequently increasing the efficiency.

FIG. 40.

The value of coefficient K varies from 7 (for the usual

types of fuselage) to 2.8 (for perfect dirigible shapes). It

is interesting to compare such values with the coefficient

of head resistance of a flat disc 1 sq. ft. in area, which is

equal to 30. To move the above disc at a speed of 100

m.p.h. we must overcome a resistance of 30 lb., while in the

case of the fuselage of equal section, but having a perfect

streamline shape, we must overcome a resistance of only
2.8 lb., or less than one-tenth the head resistance of the

disc. Practically, a well-shaped fuselage has a coefficient of

about 6, so if its major section is, for instance, 12 sq. ft.,

the resistance to be overcome at a speed of 150 m.p.h. is

6 X 12 X = 162 Ibs.

which will theoretically absorb about 66 H.P.

Fuselages may be divided into three principal classes,

depending on the type of construction used:

(a) Truss structure type,

(6) Veneer type, and

(c) Monocoque type.
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The truss type generally consists of 4 longitudinal longer-

ons, held together by means of small vertical and horizontal

struts and steel wire cross bracing (Fig. 41). The whole

frame is covered in the forward part with veneer and alumi-

num and in the rear with fabric. The longerons are gen-

erally of wood, and the small struts are often of wood,

although sometimes they are made of steel tubing.

Fuselages built of veneer are similar to the truss type as

they also have 4 longitudinal longerons, but the latter,

instead of being assembled with struts and bracing, are held

in place by means of veneer panels glued and attached by
nails or screws. By the use of veneer, which firmly holds

the longerons in place along their entire length, the section

of the longerons can be reduced (Fig. 42).

The monocoque type has no longerons, the fuselage

being formed of a continuous rigid shell. In order to insure

the necessary rigidity, the transverse section of the mono-

coque is either circular or elliptical. The material gener-

ally used for this type is wood cut into very thin strips,

glued together in three or more layers so that the grain of

one ply runs in a different direction than the adjacent

plies. This type of construction has not come into general

use because of the time and labor required in comparison
with the other two types, although it is highly successful

from an aerodynamical point of view.

Whatever the construction of the fuselage be, the distribu-

tion of the component parts to be contained in it does not

vary substantially. For example, in a two-seater biplane

(Fig. 43), at the forward endwe find the engine with its radia-

tor and propeller; the oil tank is located under the engine,

and directly behind the engine are the gasoline tanks, located

in a position corresponding to the center of gravity of the

machine. It is important that the tanks be so located, as

the fuel is a load which is consumed during flight, and if it

were located away from the center of gravity, the constant

decrease in its weight during flight would disturb the

balance of the machine.
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Directly behind the tanks is the pilot's seat, and behind

the pilot is the observer. Fig. 43 shows the positions of the

machine-guns, cameras, etc. The stabilizing longitudinal

surfaces and the directional surfaces are at the rear end of

the fuselage. The wings, which support the entire weight

of the fuselage during flight, are attached to that part

on which the center of gravity of the machine will fall.

Under the fuselage is placed the landing gear. Its proper

position with respect to the center of gravity of the machine

will be dealt with later on.



CHAPTER IV

THE LANDING GEAR

The purpose of the landing gear is to permit the airplane

to take off- and land without the aid of special launching

apparatus.
The two principal types of landing gears are the land and

marine types. There is a third, which might be called the

intermediate type, the amphibious, which consists of both

wheels and pontoons, enabling a machine to land or "take

\

FIG. 44.

off" from ground or water. This discussion will be devoted

solely to wheeled landing gears, the study of which pertains

especially to the outlines of the present volume.

The "take off" and landing, especially the latter, are

the most delicate maneuvers to accomplish in flying.

Even though a large and perfectly levelled field is avail-

able, the pilot when landing must modify the line of flight

until it is tangent to the ground (Fig. 44) ; only by doing
this will the kinetic force of the airplane result parallel to

the ground, and only then will there be no vertical com-

ponents capable of producing shocks.

44
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In actual practice, however, the maneuvers develop in

a rather different manner. First, the fields are never

perfectly level, and secondly, the line of flight is not always

exactly parallel to the ground when the machine comes in

contact with the ground. The landing gear must therefore

be equipped with shock absorbers capable of absorbing
the force due to the impact.

The system of forces acting on an airplane in flight is

generally referred to its center of gravity, but for an air-

L= Tofal Liftofthe Wings and Horizontal
Tail Planes.

T- Propeller Thrust,
'enterof Ghpvity

Inertia Force.

G" Reaction of Ground.

FIG. 45.

plane moving on the ground, the entire system of the acting

forces must be referred to the axis of the landing wheels.

Such forces are (Fig. 45),

T = propeller thrust,

W = weight of airplane,

L = total lift of wing surfaces,

R = total head resistance of airplane,

/ = inertia force,

F = friction of the landing wheels, and

G = reaction of the ground.

The moments of these forces about the axis of the landing

gear may be divided into four groups:

1. Forces whose moments are zero (the reaction of the

ground, G),
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2. Forces whose moments will tend to make the machine

sommersault (forces T and F),

3. Forces whose moments tend to prevent sommersault-

ing (forces W and R), and

4. Forces whose moments may aid or prevent sommer-

saulting (forces L and 7) .

In group 4, the moment of the force L may be changed
in direction at the pilot's will, by maneuvering the ele-

vator; force I prevents sommersaulting when the machine

accelerates in taking off, and aids sommersaulting in

landing when the machine retards its motion.

In practice it is possible to vary the value of these mo-
ments by changing the position of the landing gear, placing

it forward or backward.

By placing the landing gear forward, the moment due to

the weight of the machine is particularly increased, and it

may be carried to a limit where this moment becomes so

excessive that it cannot be counterbalanced by moments
of opposite sign. Then the airplane will not "take off,"

for it cannot put itself into the line of flight.

By placing the landing 'gear backward, the moment due

to the weight is decreased, and this may be done until the

moment is zero, and it can even become negative; then the

machine could not move on the ground without sommer-

saulting. Consequently it is necessary to locate the land-

ing gear so that the tendency to sommersault will be de-

creased and the "take off" be not too difficult. In practice
this is brought about by having an angle of from 14 to

16 between the line joining the center of gravity of the

machine to the axis of the wheels, and a vertical line pass-

ing through the center of gravity.

Let us examine the stresses to which a landing gear is

subjected upon touching the ground. Assume, in this

case, an abnormal landing; that is, a landing with a shock.

(In fact, in the case of a perfect landing, the reaction of the

ground on the wheels is equal to the difference between
the weight W and the sustaining force L, and assumes a

maximum value when L =
;
that is, when the machine is
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standing.) In the case of a hard shock, due either to the

encounter of some obstacle on the ground, or to the fact

that the line of flight has not been straightened out, the

kinetic energy of the machine must be considered. That
kinetic energy is equal to

where g is the acceleration due to gravity, and V the velocity
of the airplane with respect to the ground. The foregoing
is the amount of kinetic energy stored up in the airplane.

Naturally, it would be impossible to adopt devices

capable of absorbing all the kinetic energy thus developed,
as the weight of such devices would make their use pro-
hibitive. Experience has proven that it is sufficient to pro-

vide shock absorbers capable of absorbing from 0.5 per
cent, to 1 per cent, of the total kinetic energy. Then the

maximum kinetic energy to be absorbed in landing an air-

plane of weight W and velocity V, is equal to

W
0.0025 to 0.0050 X X V 2

y

For example, for an airplane weighing 2000 lb., moving at

a velocity of 100 m.p.h. (146 ft. per sec.), assuming 0.004,

it will be necessary that the landing gear be capable of

absorbing a maximum amount of energy equal to

2000 \\^^)
0.004 X

" "
X = 5300 ft.-lb.

The parts of the landing gear intended to absorb the

kinetic energy of an airplane in landing, are the tires and

shock absorbers. Fig. 46 gives the work diagrams for a

wheel. The wheel is capable of absorbing 900 ft.-lb. with a

deformation of 0.25 it. Fig. 47 gives the diagram of the

work referred to per cent, elongation for a certain type of

elastic cord. The work absorbed by n ft. of elastic cord

under a per cent, elongation of x is equal to the product of

77

^.^ times the area of the diagram corresponding to x per
1UU
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cent, elongation. Supposing, for instance, to have a shock ab-

sorbing system 32 ft. long, allowing an elongation of 150 per
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Rubber cord shock absorbers, which perform work by
their elongation, have proven to be the lightest and most

FIG. 48.

FIG. 49.

FIG. 50.

practical. Experiments have been made with other types,

such as the steel spring, hydraulic and pneumatic, but the
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results have shown these types to possess but little merit.

Fig. 48 illustrates an example of elastic cord binding. Fig.

49 shows the outline of a landing gear.

Up to this point, our discussion has been only on the

vertical component of the kinetic energy. Consideration

must also be given the horizontal component, whose only

effect is to make the machine run on the ground for a cer-

tain distance. When the available landing space is limited,

the machine must be slowed down by means of some brak-

ing device, in order to shorten the distance the machine

has to roll on the ground. Friction on the wheels, head

resistance and the drag all have a braking effect, but it

often happens that these retarding forces are not sufficient.

The practice therefore prevails of providing the tail skid

with a hook, which, as it digs into the ground, exerts on

the machine an energetic braking action (Fig. 50). On
some machines, a short arm, with a small plow blade at its

lower end, is attached to the middle of the landing gear

axle, which can be caused to dig into the ground and pro-
duce a braking effect.

Similar to the landing gear, the tail skid is also provided
with a small elastic cord shock absorber to absorb the kinetic

energy of the shock.

On certain airplanes, use is made of aerodynamical brakes

consisting of special surfaces which normally are set in the

line of flight, and consequently offering no passive resist-

ances, but when landing they can be maneuvered so as to

be disposed perpendicularly to the line of motion, producing
an energetic braking force.



CHAPTER V

THE ENGINE

The engine will be dealt with only from the airplane

designers point of view. For all the problems peculiar to

the technique of the subject, special texts can be referred to.

There are various types of aviation engines with rotary

or fixed cylinders, air cooled or water cooled, and of ver-

tical, F, and radial types of cylinder disposition. Whatever

the type under consideration, there exist certain funda-

mental characteristics which enable one to judge the engine

from the point of view of its use on the airplane. Such

characteristics may be grouped as follows:

1. Weight of engine per horsepower,

2. Oil and gasoline consumption per horsepower per hour,

3. Ratio between the major section of the engine and the

number of horsepower developed,

4. Position of the center of gravity of the engine with

respect to the propeller axis, and

5. Number of revolutions per minute of the propeller

shaft.

In order to judge the light weight of an engine, it is not

sufficient to know only its weight and horsepower; it is

also essential to know it specific fuel consumption. If we

call E the weight of the engine, P its power, C the total

fuel consumption per hour (gasoline and oil), and x the

number of hours of flight required of the airplane, then the

smaller the value of the following equation, the lighter will

be the motor:

V = E
p + xX

C
p ;.

(1)

For a given engine, equation (1) gives the linear relation

between y and x, which can be translated into a simple,

51
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graphic, representation. Let us consider two engines, A
and B, having the following characteristics:

TABLE 1

Engine
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Practically, for engines of the same general types, the

C
value of the specific consumption c =

p>
varies around the

same values. In that case, only the weight per horsepower,
E .

e =
p is of interest. In fact, that ratio is so important that

it may often be convenient to adopt an engine of lower

power in comparison with another of high power, for the

sole reason that for the latter the above ratio is higher.

Let us suppose that we wish to build an airplane of given

horizontal and climbing speed characteristics, capable of

carrying fuel for a flight of three hours and a useful load of

600 Ib. (pilot, observer, arms, ammunition, devices, etc.).

Fixing the flying characteristics is equivalent to fixing the

maximum weight per horsepower, of the machine with its

complete load. In fact, we shall see further on in discussing
w

the efficiency of the airplane, that the lower the ratio
-p

between the total weight W, and the power P of the motor,

the better will be the flying characteristics of the machine.

W
Supposing for example, that

-p
= 10 Ib. , Analyzing the

weight W, we find it to be the sum of the following

components :

WA = weight of airplane without engine group

and accessories,

WP = weight of the complete engine group,

Wc
= weight of oil and gasoline,

Wv = useful load,

We can then write

W = WA + WP + Wc + Wv

Generally WA = l/3 W; WP = eP. In this case (assuming

4 hours of flight) Wc
= 4CP, where C is the specific con-

sumption per horsepower which can be assumed to be equal

to 0.55; this gives Wc
- 2.2P; furthermore Wv = 600 Ib.
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We shall then have

W = yz W + eP + 2.2P + 600

W
that is, since

-p
must be equal to 10

60

4.46 - e

and consequently
600W =

0.446 - O.le

In Fig. 52 these relations have been translated into curves,

and it is seen that there are innumerable couples of values

e, P, which satisfy the conditions necessary for the construc-

tion of the airplane under consideration.

Let us examine the extreme values for e = 2 Ib. per H.P.

and e = 3 Ib. per H.P. We see that

if e = 2; P = 246 H.P. and W = 2460 Ib.

if e = 3
;
p = 416 H.P. and W = 4160 Ib.

From these it is obvious then, that although using an

engine of 70 per cent, more power, the same result is ob-

tained, plus the disadvantage of having an airplane of which

the surface (and consequently the required floor space), is

70 per cent, greater.

However, in practice it often happens that an engine of

higher power than another, not only does not possess higher

weight per horsepower, but on the contrary, has a lower

weight per horsepower. It is only necessary to note the

importance of this matter.

Another important consideration is the bulk of the en-

gine. Of two engines having the same power, but different

major sections, we naturally prefer the engine of lesser

major section, because it permits the construction of fusel-

ages offering less head resistance. An example will make
the point clearer. Supposing we have two engines, each

of 300 H.P., whose characteristics with the exception of

their bulk, are absolutely similar. Suppose that one of
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these engines has a major section of 6 sq. ft., and the other

of 9 sq. ft., the head resistance of the fuselage of the second

engine is 50 per cent, greater than that of the first. Let

ouu
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greater, thereby losing about 7 per cent, of the speed, due to

the relations between the various head resistances and the

speeds, as we shall see in the discussion on the efficiency of

the airplane.

The position of the center of gravity with respect to

the propeller axis, has a great importance in regard to the

installation of an engine in the airplane. An ideal engine

should have its center of gravity below, or at the most, coin-

cident with the line of thrust. This last condition is true

for all rotary and radial engines. Instead, for engines with

vertical or V types of cylinders, the center of gravity

is generally found above the line of thrust, unless the pro-

peller axis is raised by using a transmission gear. In

speaking of the problems of balancing, we shall see the great

importance of the position of the center of gravity of the

machine with respect to the axis of traction, and the con-

venience there may be in certain cases, of employing a trans-

mission gear in order to realize more favorable conditions.

Furthermore, the transmission gear from the engine shaft

to the propeller shaft, may in some cases prove very con-

venient in making the propeller turn at a speed conducive

to good efficiency. In the following chapter we shall see

that the propeller efficiency depends on the ratio between

the speed of the airplane and the peripheral speed of the

propeller ;
since the peripheral speed depends on the number

of revolutions, this factor consequently becomes of vast

importance for the efficiency.

Let us see now which criterions are to be followed in

installing an engine in an airplane, and let us discuss briefly,

the principal accessory installations such as the gasoline
and oil systems, and the water circulation for cooling.

As has been pointed out before, in the type of machine
most generally used today, the tractor biplane the

engine is installed in the forward end of the fuselage on

properly designed supports, usually of wood, to which it

is firmly bolted. The supports, in turn, are supported on
transverse fuselage bridging and are anchored with steel

wires which take up the propeller thrust (Fig. 53) .
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The oil tank is generally situated under the engine, so

as to reduce to a minimum the piping system. There

are two pipe lines one leading from the bottom of the

tank and which is used for the suction, the other, for the

return and leading into the top of the tank (Fig. 54).

The oil tank is usually made of copper or leaded steel sheets;

it generally weighs from 10 per cent, to 12 per cent, as much

as the oil it contains.

It is easy to place all the oil in one tank, as the oil con-

sumption per horsepower is about {oo f the gasoline

Oil Feedand
Return Pump

'

Return OilPump

Filter
' Return Pipe

FIG. 54.

consumption, but it is a difficult matter to contain all the

required gasoline in a single tank, especially for powerful

engines. Therefore, multiple tanks are used. As the gaso-

line must be sent to the carburetor which is generally

located above the tanks, it is necessary to resort to artifices

to insure the feeding. The principal artifices are

a. Air pump pressure feed,

b. Gasoline pump feed.

The general scheme of the pressure feed is shown in Fig.

55. The motor M, carries a special pump which compresses
the air in tank T] the gasoline flowing through cock i,

goes to carburetor C. Cock i enables the opening or closing

of the flow between tank T and the carburetor. Further-
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more, it allows or stops a flow between the carburetor and
a small auxiliary safety tank t, situated above the level of

the carburetor, so that the gasoline may flow to the carbu-

FIG. 55. Gasoline pressure feed system.

retor by gravity; the gasoline in this tank is used in case

the feed from the main tank should cease to operate. Fi-

1 i ' ' ' '

FIG. 56.

nally, cock i also enables a flow between the main tank T

and the auxiliary tank t, in order that the latter may be

replenished. The scheme of circulation is completed by a
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hand pump p, which serves to produce pressure in the tank

before starting the engine; cock 2 establishes a flow between

tank T and either or both of the pumps P and p, or excludes

them both.

Fig. 56 shows the scheme of circulation by using the gaso-

line pump feed. The gasoline in the main tank T flows to

a pump G, which sends it to the carburetor. Cock i

permits or stops a flow between tank T and the carburetor,

or between tank t and the carburetor, or between T and t.

Pump G may be operated by a special small propeller or

by the engine.

In the schemes of Figs. 55 and 56, an example of only

one main tank is shown. If there are two or more tanks

the conception of the schemes remains the same, the cocks

only changing so as to allow simultaneous or single func-

tioning of each of the tanks.

Gasoline pump feed is much more convenient than pres-

sure feed because it is more reliable. It does not use com-

pressed air, is less tiresome for the pilot, as it requires of

him only the maneuver of opening or closing a cock, and

finally, because the tanks can be much lighter as they do

not have to withstand the air pressure.

As a matter of interest, a tank operating under pressure

weighs from 14 per cent, to 18 per cent, as much as the

gasoline it contains, while a tank operating without pres-

sure weighs from 10 per cent, to 13 per cent.

We shall note finally, that it is necessary to install proper
metallic filters or strainers in the gasoline feed system, in

order to prevent impurities existing in the gasoline, from

clogging up the carburetor jets.

The piping systems for gasoline and oil are made of

copper. The joints are usually of rubber. As to the diam-
eter of the piping system, it must be comparatively large
for the oil, in order to avoid obstruction due to congealing.
For the gasoline, the diameter must be such that the speed
of gasoline flow does not exceed 1 ft. to 1.5 ft. per second;
thus for instance, supposing an engine to consume 24

gallons an hour (that is, 0.00666 gallon a second) the
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inside diameter of the gasoline pipe must be from J{ 6 in.

to % in.

It is often necessary to resort to special radiators to cool

the oil. On the contrary, in order to avoid freezing, in

winter, it is necessary to insulate the tank with felt.

The water circulation exists only in water-cooled engines.

Fig. 57 shows the principle of the water-cooling system.
The engine is provided with a water pump P, which

pumps the water into the cylinder jackets; after it has been

FIG. 57. Water-cooling system.

warmed by contact with the cylinders, it flows to the radi-

ator R, which lowers its temperature. Finally, from the

radiator, the water flows back to the pump, and the circuit

is completed.
The gasoline consumption of the engines varies from 0.45

to 0.55 Ib. per H.P. per hour. Assuming an average of

0.5 Ib. per H.P., and since the heat of the combustion of

gasoline is about 18,600 B.t.u. per Ib., then for 1 H.P.

per hour, 9300 B.t.u. are necessary. Now, the thermal

equivalent of 1 H.P. per hour is 2550 B.t.u., therefore only

9300
= 27 '5 per cent ' f the heat f combustion of the
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gasoline is utilized in useful work; the rest, 72.5 per cent, or

6550 B.t.u. are to be eliminated through exhaust gases or

through the cooling water. The B.t.u. taken up by the

exhaust, compared with those taken up by the cooling water,

vary not only for each engine, but even for each type of

exhaust system. On the average, we can assume the water

to absorb about 30 per cent, of the B.t.u., or about 2800

B.t.u. for every horsepower per hour; the quantity of

B.t.u. to be absorbed by the cooling water of an engine

of power P, is consequently equal to (2800P) B.t.u.

This quantity of heat must naturally be given up to

the air, and the radiator is used for that purpose.

From the standpoint of its application to the airplane, the

radiator must possess two fundamental qualities, which are :

First, it must be as light as possible, and

Second, It must absorb the minimum power to move it

through the air.

Since the weight also involves a loss of power, suppose

that, as we have indicated, the flying characteristics depend
on the weight per horsepower, we may then say that the

lower the percentage of power absorbed the more efficient

will be the radiator. It is possible to determine experi-

mentally the coefficients which classify a given type of

radiator according to its efficiency, with respect to its

application to the airplane.

Before all, it must be remembered that a radiator is

nothing more than a reservoir in which the water circulates

in such a way as to expose a large wall surface to the air

which passes conveniently through it. There are two main

types of radiators : the water tube type, and the air tube or

honeycomb type. In the first, the water passes through a

great number of small tubes, disposed parallel to, and at

some distance from each other; the air passes through the

gaps between the tubes. In the air tube radiators (also

called honeycomb radiators because of their resemblance

to the cells of a beehive), the water circulates through the

interstices between the tubes, while the air flows through
the tubes. For the present great flying speeds, the latter
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type of .radiator has proven much more suitable, and
therefore is more generally used.

To compare two types of honeycomb radiators, we will

take into consideration a cubic foot of radiator, and study
its weight, water capacity, cooling surface, head resistance,

and cooling coefficient. The first three are geometrical
elements which can be defined without uncertainties.

The head resistance depends not only on the speed of

the airplane, but also on its position in the machine, and

frontal area.

Finally, the cooling coefficient beside depending on the

type of radiator, depends on the velocity of water flow and

air flow, and the initial temperatures of the air and water.

As one can see, there are.many factors which would be

difficult to condense into one single formula. We must
therefore content ourselves with studying separately, the

influence of each of the above factors.

In the following table are given' the values of the weight
WR ,

water capacity Ww ,
and radiating surface S per cubic

foot, of radiator for certain types of radiators; also let us

call a the ratio between the weight of 1 cu. ft. of radiator

including the water, and its radiating surface.

TABLE 2

Type of radiator
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Let us call d the depth of the radiator core; S X d = I

or S =
-jj

thus the preceding expression becomes

X
\
X F 3

(1)

The coefficient varies not only with the different types
of radiators, but with the same radiator, depending on

whether it is placed in the front of the fuselage, or whether

it is completely surrounded by free air.

Equation (1) shows that to decrease the head resistance

it is convenient to augment the depth of the radiator d.

This increase, however, is limited by the fact that it is

advisable to keep at a maximum the difference in the

water and air temperatures; then if the depth of the radia-

tor tubes is greatly increased, the air is excessively

heated, thus decreasing the difference in temperature
between it and the water. For this reason the depth d

may become greater as the air flow v through the tubes is

increased in velocity. The following is a practical formula

that may be used in determining d:

d = 8 X I X \/v (2)

where I is the diameter of the tubes in feet, and v the velocity
of the air flow through the tubes in feet per second.

The quantity of heat radiated by 1 cu. ft. of radiator,
not only depends on the type, but on the difference between
the temperature tw of the water, and t a of the air, on the

velocity of water flow, on the velocity v of air flow through
the tubes, and on the radiating surface S per cubic foot of

the given radiator.

Assuming the velocity of water flow to be constant, the

quantity of B.t.u. may be expressed by

7 X (tw
-

to) X v2 (3)

where j is the cooling coefficient, varying with the type of

radiator.

Now, if the engine has power P, the radiator must take
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care of 2800P calories. Therefore the volume C of the

radiator must be such that

C X 7 X (t w
-

to) X v X S = 2800P

or,

C = 28QOP m
7 X (tw

-
t a) X v X S

The weight of the radiator will be C X W, and the

power absorbed by its head resistance will be

c x ft x
l
x v* = c_xjLXZ3

d SXlXVv
If we call

-jr

the ratio - > the power required to carry

C X TFlb. will be (in ft. Ibs.),

C X W X ~ X V

Therefore the total power absorbed by the cooling system
will be

PR
= ^XAXJJ + C XWX L XVSXlXv D

x _ X
L,
D

and by equation (4)

800

jX(tw -ta)XvX2
We can further simplify the preceding expression. First

of all we will note that v (the velocity of air flow inside of

the tubes), is proportional to the speed of the airplane; we
can then write

v = d X V

The temperature tw is usually taken at 176F. (80C.);
it is not convenient to increase it, as the airplane must be

able to fly at considerable altitude, where due to the atmos-

pheric depression, the boiling point of water is lowered.

For the air temperature t a ,
we must take the maximum

annual value of the region in which the machine is to fly;

in cold seasons, the cooling capacity of the radiator becomes
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excessive, and therefore, special devices are resorted to, for

cutting off part, or all of the radiator.

In very warm climates, we may take for example t a
=

104, then the result is

tw
-

t a
= 176 -- 104 = 72F.

As to the dimension I (the diameter of the tube through

which the air passes), experiments have shown that to

diminish W, and increase 2, I must be kept around 0.396

in. = 0.033 ft. Finally, the ratio
y,

for a good wing, varies

Po
around 15. Then letting p = ratio

-p->
where P is the

power absorbed by the radiator, and P the total power,
W

equation (5), remembering that =
, by the proper re-

^/

ductions, becomes

where the coefficients have the following significance:

p
p =

-=j
= percentage of power absorbed by the

radiator,

W
a = = weight of radiator per square foot of

2^

radiating surface,

|8
= coefficient of head resistance,

7 = cooling coefficient of the radiator,

5 =
-y

= coefficient of velocity reduction inside the

tubes, with respect to the speed of the airplane,

and

S = radiating surface per cubic foot of radiator.

C
Similarly, if we call c = p the volume of radiator re-

quired per horsepower, and simplifying as before, equation

(4) gives

c
- 38.9 1

(7)7X2-5 X V
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The two equations (6) and (7), allow one to solve the

problem of determining the volume of the radiator and the

power absorbed. For a given type of radiator, a, ft 6,

and S are constants, then one can write

149/3 .
583 38 ' 9

y X 2 X * 7X5 7 X 5 X 2
=

and therefore equations (6) and (7) become, respectively,

(8)

C

Naturally, such relations can be used within the present
limits of airplane speeds (80 m.p.h. to 160 m.p.h.). They
state that the volume of the radiator is inversely propor-
tional to the speed, and the power required is proportional
to the % power of the speed.

Before leaving the discussion on radiators, we will briefly

discuss the systems of reducing the cooling capacity. There
are two general methods; to decrease the speed of water

circulation, or to decrease the speed of air circulation.

The second is preferable, and is today more generally

adopted. It is effected by providing the front face of the

radiator with shutters which can be more or less closed

until the air passage is completely obstructed.

Mufflers have not as yet been extensively adopted for

aviation engines, principally because they entail a direct

loss of power amounting to from 6 per cent, to 10 per cent.;

and because of their bulk and weight. Ordinary exhaust

tubes are used, exhausting singly for each cylinder, or

joined together, the point being, to convey the gases away
from those parts of the machine that might be damaged
by them.

Before concluding this chapter, it is desirable to note the

functioning of the engine at high altitudes. Modern air-

planes have attained heights up to 25,000 ft.; battleplanes

carry out their mission at heights varying from 10,000 to

20,000 ft., therefore it is necessary to study the actions of the

engine at such altitudes.
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Since the density of the air decreases as one rises above the

ground, according to a logarithmic law; let H be the height

in feet, at some point in the atmosphere above sea level,

and
jj.
the ratio between the density at height H, and that

at ground level; then

H = 60,720 log
X

M

Fig. 58 shows the diagram for M as a function of H, con-

structed on the basis of the preceding formula.
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power P, is equal to the product of the angular velocity co

by the engine torque M.

P = co XM
At height H, the engine torque M is proportional to the

O.JO?

0.900
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In Fig. 59, a diagram is given for the reduction in per-

p
centage =- of the power, corresponding to the increase of H.

to

In one of the following chapters will be shown the in-

fluence that the decrease in the air density exerts on the

power required for the sustentation of the machine. It

will be readily perceived, that if a machine is to climb

25,000 ft., it must be able to maintain itself in the air with

0.251 of the power of the engine; in other words, it must

carry an engine which will develop = = 4 times the

minimum power strictly necessary for its sustentation.

In practice, these are the actual means chosen by designers

to attain high altitudes. That is, the machines are

equipped with engines of such excess power, as to be

sufficient to maintain flight even after the strong reduction

of power mentioned above.

Such a method is evidently irrational, since at ground
level the airplane employs a useless excess of power, while

at high altitudes it is overloaded with a weight of engine

entirely out of proportion to the power actually developed.
To eliminate this loss of efficiency, two solutions present

themselves. One provisional solution (but of inestimable

value in augmenting the efficiency of engines as they are

actually conceived and constructed) consists of providing
the engine with an air compressor which will feed the car-

buretor. In this way, the mass of gas mixture taken in by
the engine at each admission stroke, is greater than the

amount which would be sucked in from the atmosphere

directly, and as a result, the engine torque is increased.

Two types of compressors have thus far been experi-

mented with; the turbo compressor designed by Rateau

(France), actioned by means of the exhaust gases, and the

centrifugal multiple compressor designed by Prof. Anastasi

(Italy) , actioned by the engine shaft.

The latter type, for example, with an increase in weight
of less than 10 per cent., allows a complete recuperation of

the power at 13,000 ft., or it recuperates 50 per cent, of the
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power. Since it absorbs 10 per cent, of the power in

operation, the actual power recuperated is 40 per cent.

These compressors have not yet been adopted for practi-

cal use, because of reasons inherent to the operation of the

propeller, which will be seen in the following chapter.

The second solution (the one toward which engine

technique must inevitably direct itself in order to open a

way for further progress), consists in predisposing the

engines so that the compression of air at high altitudes

may be effected without the aid of external compressors.



CHAPTER VI

THE PROPELLER

The propeller is the aerial pfopulsor universally adopted
in aviation.

Its scope is to produce and maintain a force of traction

capable of overcoming the various head resistances of the

wings and other parts of the airplane.

Calling T the propeller traction in pounds, and V the

velocity of the airplane in feet per second, the product T X
V measures the useful work in foot pounds per second

accomplished by the propeller. If P is the power of the

engine in horsepower, the propeller efficiency is expressed

by
TV

p =
550 X P.

Every effort must of course be used in making the pro-

peller efficiency as high as possible. In fact, equation (1)

may also be written as

^V_
550 X P

which means that having assumed a given speed and a given
head resistance, the power required for flight will be so much
greater as the value of p is smaller. Suppose for example
that T = 500 Ib. and V = 200 ft. per sec., then

for Pl
= 0.70 Pi = 260 H.P.

for P2
= 0.80 P2

= 227 H.P.

and P2 is 13 per cent, less than PI.

A propeller is defined by a few geometric elements, and

by its operating characteristics.

The geometric elements of a propeller are the number of

blades, the diameter, the pitch, the maximum width of

the blades and their profile.

72
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Propellers are built with 2, 3, and 4 blades. The type
most commonly used is the 2-blade propeller, especially

when quick-firing guns with synchronized devices for firing

through the propeller, are mounted on the airplane. On
machines that have their propellers in front, the problem
of firing directly forward is solved by equipping the machine

guns with special automatic devices operated by the engine

FIG. 60.

(devices called synchronizers), which release the projectiles

at the instant the propeller blades have passed in front of

the machine gun muzzle; in other words, the projectile

is fired through the plane of rotation of the propeller when

the blade has rotated by an angle a (Fig. 60). Angle a

is not fixed, but varies with the number of revolutions of the

propeller, which is easily understood if one considers that

FIG. 61.

the velocity of the projectile remains constant, while the

angular velocity of the propeller varies. Thus, as the

number of revolutions change, there is a dispersion of pro-

jectiles; these fall in a sector 5, which is called the angle of

dispersion of the synchronizer (Fig. 61). Now, if this

angle is greater than 90, as it often happens, it is impossible

to use 4-bladed propellers, altho in certain cases, 4-bladed
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propellers may be convenient for reasons of efficiency, as

will be observed further on.

The diameter of the propeller depends exclusively upon
the power the propeller has to absorb, and upon its

number of revolutions.

The pitch of the propeller, from an aerodynamical point

of view, should be defined as "the distance by which the

propeller must advance for every revolution in order that the

traction be zero." In practice, however, the pitch is measured

by the tangent of the angle of inclination of the propeller

blade with respect to its plane of rotation; if 6 is the angle
for a cross section AB of the propeller, at a distance r from

FIG. 62.

the axis XX (Fig. 62), the pitch of the propeller at that

section will be

p = 2irr tang 6

Practically, propellers are made with either a constant

pitch for all sections, or a more or less variable one. Figs.

63 and 64 illustrate respectively, two examples of propellers,

one with constant pitch, the other with variable pitch.

The width of the blade is not important as to its absolute

value, but is important with respect to the diameter.

Since the propeller blade may be considered as a small wing
moving along an helicoidal path, it is evident that to

increase the efficiency, it is convenient to reduce the width

of the blades to a minimum with respect to the diameter.

However, it is not possible to reduce the blade width below
a certain limit, for reasons of construction and resistance of
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the propeller. Practically, it oscillates from 8 to 10 per
cent, of the diameter.

The profile of a propeller, although varying from section

to section, characterizes the type of the propeller. It

bears a great influence on the characteristics of a propeller.

Pi -teh Equal for
all Sections.

FIG. 63.

All propellers having the same type of profile, are said to

belong to the same family.

Numerous laboratory experiments on propellers, by
Colonel Dorand, have demonstrated that there exist cer-

tain well-determined relations between the elements of

PmPnRtftrPte
1

fM
FIG. 64.

propellers that are of the same family and geometrically

similar, so that once the coefficients of these relations are

known, it is easily possible to obtain all the data for the

design of the propeller. Let

D = the diameter of the propeller in feet,

p = the pitch of the propeller in feet,

P = the power absorbed by the propeller on the ground,
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N = number of revolutions per second,

V = the speed of the machine in feet per second, and

p = the efficiency of the propeller,

than the relations binding the preceding parameters are

Po = a n 3D 5
(1)

Equation (2) states that the coefficient a of equation (1)

V
is not a constant, but depends on the ratio

^-
Let

us examine the graphical interpretation of this ratio.

TTnD

FIG. 65.

y
Since TrnD is the peripheral speed of the blade tip, g
measures the angle that the path of the blade tip makes
with the plane of rotation of the propeller (Fig. 65) . Now,
the angle of incidence i of the blade with respect to its path,
is measured exactly by the difference 6 6'] as 6 is fixed,

i varies with the variation of 0'; this explains why as tan-

y
gent 6' = g varies, the power absorbed by the propeller

varies, and consequently coefficient a varies. This also

explains equation (3), which shows that the propeller
y

efficiency is dependent upon ~
;
in fact, as in the case of

a wing, the efficiency of a propeller blade varies with the

variation of the angle of incidence i.
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Returning to equation (1), and assuming a given value
for a, for instance, a = 3 X 10~ 8

,
then that equation

becomes

Po = 3 X 10~ 8 n 3Z> 5

and states

1. For a propeller of a given diameter, the power required
to rotate it, increases as the 3d power of n. In Fig. 66
a curve is drawn illustrating that law, assuming D = 10

ft.; the curve is a cubic parabola.
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Equation (2), which gives a as a function of
irnD

is

of interest only inasmuch as it is necessary to know the

value of a for equation (1). Therefore, we shall not pause
in examination of it.

I.V
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=
0.8; Fig. 69 gives the diagram p = /2 f g j

for such

propellers. The diagram shows that p increases and
reaches a maximum value pmax = 0.71 corresponding to

y
the value = 0.227.

Let us now consider a group of propellers also of similar

7?

profile, but having
- =

1.0, and let us draw the efficiency

diagram (Fig. 70). This will be similar to the preceding
one in shape, but will reach a value pmax = 0.77 corre-

V
spending to a value of g

= 0.275.

fQ

If this experience is repeated for various values of yy

it will be observed that the maximum efficiency obtainable

from a propeller of certain profile, varies with the variation

of that ratio; it is easy to construct a diagram giving all the

values of <pmax as functions of
-g-

Such a diagram shows

that a propeller of a certain type, gives its maximum effi-

ciency when
-g

= 1.20. Naturally this condition does not

suffice, as the propeller must rotate at a number of revolu-

y
tions 7i, such that the ratio ~ will be the one at which

irnD

the propeller actually attains the maximum efficiency.
IY\

Fig. 71 gives the values of
-g>

a, and p, as functions of

V
>
for the best propellers actually existing.

The use of these diagrams requires a knowledge of all the

aerodynamical characteristics of the machine for which the

propeller is intended. However, even a partial study of

them is very interesting for the results that can be attained.

v V
First, we see that for - 1.18 and ~ = 0.32, theD irnD

maximum efficiency p reaches a value of 82 per cent.

Obviously that is very high, especially when the great
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simplicity of the aerial propeller is considered. But un-

fortunately, it often occurs in practice, that that value of

efficiency cannot be attained because there are certain

TxICT7

6x10

5x10

4x10

Q.Q

3x10

2x10

IxlO
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V

FIG. 71.

parameters which it is impossible to vary. An example

will illustrate this point.

Let us assume that we have at our disposition an engine
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developing 300 H.P., while its shaft makes 25 r.p.s., and let

us assume that we wish to adopt such an engine on two

different machines, one to carry heavy loads and conse-

quently slow, the other intended for high speeds. Let the

speed of the first machine be 125 ft. per sec., and that of

the second 200 ft. per sec. We shall then determine the

most suitable propeller for each machine.

For the first machine, as n = 25, and V = 125, the ex-

pression
-

^ becomes equal to W We must choose a

value of D, such that together with the value of a corre-
i f\r\

sponding to-W-> (Fig. 71), it will satisfy the equation

300 = an*D 5

or, for n = 25

a X D 5 = 0.0192

Now the corresponding values of a and D satisfying those

equations are

a = ~1.4 X 10 -7 andD = 10.6; in fact, for this value of D,

3.14 X25
5

X 10.6
= ~

' 15
>
to which '^responds

a = 1.4 X 10~ 7
;
the corresponding value of p is '~ 0.62,

that is, our propeller will have an efficiency of 62 per cent.;

its pitch will be 0.48 X 10.6 = 5.1 ft.

For the second machine instead n = 25, and V =

onn 4-V
V u 20 2 '55

the expression ^ becomes
3J4 x 25 ^D ~^

and a X D 5 = 0.0192; the two values satisfying the desired

conditions are

V 200

3.14 X 25 X83
=

'296; * = ^ X

and corresponding to these values p = 0.79. The pitch
results equal to 9.3 ft.

We can see then, that the propeller for the second
79

machine, has an efficiency of 79 per cent.; that is
^>

=

~1.27 more than that of the first machine. It would be
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possible to improve the propeller efficiency of the first

machine by using a reduction gear to decrease the number
of revolutions of the propeller. In this case, it would even

be possible by properly selecting a reduction gear, to attain

the maximum efficiency of 82 per cent.

But this would require the construction of a propeller

of such diameter, that it could not be installed on the

machine. Consequently we shall suppose a fixed maximum
diameter of 14 ft. Then it is necessary to find a value of

V
n, such that value a corresponding to g gives

a X n 3 X D 5 = 300. That value is n = 12.4 r.p.s.,

V
for which ~ = 0.23 and p = 0.72. We see then that in

0.72
this case, the reduction gear has gained g-^s

= 1.16 or 16

per cent, of the power, which may mean 16 per cent, of

the total load; and if we bear in mind that the useful load

is generally about Y% of the total weight, we see that a

gain of 16 per cent, on the total load, represents a gain of

about 50 per cent, on the useful load; this abundantly
covers the additional load due to the reduction gear.

From the preceding, we see that in order to obtain good

efficiency, modern engines whose number of revolutions

are very high, must be provided with a reduction gear

when they are applied to slow machines. On the

contrary, for very fast machines, the propeller may be

directly connected, even if the number of revolutions of the

shaft is very high.

Concluding we can say, that it is not sufficient for a

propeller to be well designed in order to give good efficiency,

but it is necessary that it be used under those conditions of

speed V and number of revolutions n, for which it will

give good efficiency.

Until now we have studied the functioning of the propel-

ler in the atmospheric conditions at sea level. Let us see

what happens when it operates at high altitudes. The

equation of the power then becomes
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where M is the ratio between the density at the height under

consideration and that on the ground (see Chapter 5).

This means that the power required to rotate the propeller

decreases as the propeller rises through the air, in direct

proportion to the ratio of the densities.

As to the number of revolutions, the preceding equation

gives

Theoretically, the power of the engine varies proportion-

ally to n }
that is

P = vP

so that theoretically we should have

a X D*

and this would mean that the number of revolutions of the

propeller would be the same at any height as on the ground.

Practically, however, the motive power decreases a little

more rapidly than proportionally to M (see Chapter 5), and

consequently the number of revolutions slowly decreases as

the propeller rises in the air.

If instead, by using a compressor or other device, the

power of the engine were kept constant and equal to P
,

then the number of revolutions would increase inversely

as vV So for instance, at 14,500 ft., where /*
= 0.5 the

n n
revolutions should be Tr? = rTo = 1-26 n. A propeller

making 1500 revolutions on the ground, would make 1900

revolutions at a height. This, then, is one of the principal

difficulties that have until now opposed the introduction of

compressors for practical use. In fact, as it is unsafe that

an engine designed for 1500 revolutions make 1900, it

would practically be necessary for the propeller to brake

the engine on the ground, so as not to allow a number of

revolutions greater than 1500 X 0.79 = 1180. In this

way, however, the engine on the ground could not develop
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all its power, and therefore the characteristics of the

machine would be considerably decreased.

To eliminate such an inconvenience, there should be the

solution of adopting propellers whose pitch could be vari-

able in flight, at the will of the pilot; thus the pilot would

be enabled to vary the coefficient of the formula

P = a X n 3 X D b

and consequently could contain the value of n within

proper limits. Today, the problem of the variable pro-

peller has not yet been satisfactorily solved; but tentatives

are being made which point to positive results.

The materials used in the construction of propellers, the

stresses to which they are subjected, and the mode of

designing them, will be dealt with in Part IV of this book.





PART II

CHAPTER VII

ELEMENTS OF AERODYNAMICS

Aerodynamics studies the laws governing the reactions

of the air on bodies moving through it.

Very little of these laws can be established on a basis of

theoretical considerations. This can only give indications

in general; the research for coefficients, which are definitely

those of interest in the study of the airplane, cannot be

completed except in the experimental field.

Lift-

Direction Perpendicular'
to Lme of Flightand
Contained in the Vertical

Plane.

Direction ofthe
Line of

Flight.

Direction Perpendicularto
the

Vertical Plane Containing the

FIG. 72.

For these reasons, we shall consider aerodynamics as an
"
Applied Mechanics" and we shall rapidly study the

experimental elements in so far as they have a direct

application to the airplane.

Let us consider any body moving through the air at a

speed V, and let us represent the body by its center of

gravity G (Fig. 72). Due to the disturbance in the air,

positive and negative pressure zones will be produced on the

various surfaces of the body, and in general, the resultant

87
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R of these pressures, may have any direction whatever.

Let us resolve that resultant into three directions perpen-
dicular to one another, the first in the sense of the line of

flight, the second perpendicular to the line of flight and

lying in the vertical plane passing through the center of

gravity, and the third perpendicular to that plane.

These components R^, R s ,
and R' d ,

shall be called

respectively:

RXy the Lift component,
Rs ,

the Drag component,
R' s ,

the Drift component,

PAR

FIG. 73.

If we wished to make a complete study of the motion of the

body in the air it would be necessary to know the values, of

R^j Rs ,
and R' s ,

for all the infinite number of orientations

that the body could assume with respect to its line of path;

practically, the most laborious research work of this kind

would be of scant interest in the study of the motion of the

airplane.

Let us first note that the airplane admits a plane of sym-
metry, and that its line of path is, in general, contained in

that plane of symmetry; in such a case, the component R' d

= 0. This is why the study of components Rx and R s is

made by assuming the line of path contained in the plane
of symmetry, and referring the values to the angle i that

the line of path makes with any straight line contained in

the plane of symmetry and fixed with the machine.

In general, this reference is made to the wing chord (Fig,
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73), and i is called the angle of incidence; as to the force of

drift, usually the study of its law of variation is made by
keeping constant the angle i between the chord and the

projection of the line of path on the plane of symmetry,
and varying only the angle 5 between the line of path and

the plane of symmetry (Fig. 74) ;
the angle 5 is called the

angle of drift.

FIG. 74.

Summarizing, the study of components Rx ,
R s ,

and R' &>

is usually made in the following manner:

1. To study #x and Rs , considering them as functions

of the angle of incidence i.

2. To study R' s by considering it as a function of the

angle of drift 5.

For the study of the air reactions on a body moving

through the air, the aerodynamical laboratory is the most

important means at the disposal of the aeronautical

engineer.

The equipment of an aerodynamical laboratory consists

of a special tube system of more or less vast proportions,



90 AIRPLANE DESIGN AND CONSTRUCTION

inside of which the air is made to circulate by means of

special fans (Fig. 75). The small models to be tested are

FIG. 75.

suspended in the air current, and are connected to instru-

ments which permit the determination of the reactions

I

(3D

FIG. 76.

provoked upon them by the air. The section in which the
models are tested is generally the smallest of the tube sys-
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tern, and a room is constructed corresponding to it, from
which the tests may be observed. The speed of the air

current may easily be varied by varying the number of

revolutions of the fan.

The velocity of the current may be measured by various

systems, more or less analogous. We shall describe the

Pitot tube, which is also used on airplanes as a speed indi-

cator. The Pitot tube (Fig. 76), consists of two concentric

tubes, the one, internal tube a opening forward against

the wind, the other external tube 6, closed on the forward

end but having small circular holes. These tubes are con-

nected with a differential manometer. The pressure trans-

dV 2

mitted by tube a is equal to P + ~^r~] the pressure trans-
*Q

mitted by tube b is equal to P; thus, the differential man-
ometer will indicate a pressure h in feet of air, equal to

p + T~
~ p

that is

, dV*~
~9

consequently

y = M
\ d

as g =
32.2, the result will be

v=*~sxJ^

d represents the specific weight of the air. The preceding

formula consequently gives us the means of graduating the

manometer so that by using the Pitot tube it will read air

speed directly.

With this foreword, let us note that experiments have

demonstrated that the reaction of the air R, on a body

moving through the air, and therefore also its components
Rx ,

Rs and R' s , may be expressed by means of the formula

R = a
d XAXV*
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where

a = coefficient depending on the angle of incidence

or the angle of drift,

d = the specific weight of the air,

g = is the acceleration due to gravity (which at

the latitude of 45 = 32.2),

A = the major section of model tested (and denned

as will be seen presently), and
V = the speed.

As a matter of convenience we shall give the coefficients

assuming that the specific weight of the air is the one cor-

responding to the pressure of one atmosphere (33.9 ft. of

water), and to the temperature of 59F. Furthermore the

coefficients will be referred to the speed of 100 m.p.h.
Then the preceding formula can be written

and knowing K, it gives the reaction of the air on a body
similar to the model to which K refers, but whose section

is equal to A sq. ft., and the speed to V m.p.h.
It is of interest to know the value of coefficient K,

when the pressure and the temperature of the air are no
more 1 atmosphere and 59 F., but have respectively any
value h whatsoever (in feet of water), and t (degrees F.).

The value of the new coefficient Kht is then evidently given

by

Kht -KX h
x 4600 + 590

<
33.9

>
460 FiF.

This equation will be of interest in the study of flight

at high altitudes.

Interpreted with respect to the speed, formula (1)

states that the reaction of the air on a body moving through
it, is proportional to the square of the speed of translation.

This is true only within certain limits. In fact, we shall

soon see that in some cases, coefficient K determined by
equation (1) changes with the variation of the speed,

although the angle of incidence remains constant.
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From the aerodynamical point of view, the section of

the parts which compose an airplane may be grouped in

three main classes which are :

1. Surfaces in which the Lift component predominates,
2. Surfaces in which the Drag component predominates,

and

3. Surfaces in which the Drift component predominates.
The first are essentially intended for sustentation.

Among them, the elevator is also to be considered, of which

the aerodynamical study is analogous to that of the wings.

The second, surfaces in which the component of head

resistance exists almost solely, are the major sections of

all those parts, as the fuselage, landing gear, rigging, etc.,

which although not being intended for sustentation, form

essential parts of the airplane.

Finally, the last surfaces are those in which the air

reaction equals zero until the line of path is contained in

the plane of symmetry of the airplane, but manifests itself

as soon as the airplane drifts.

In Chapter I, we have spoken diffusely enough of the

criterions followed for the aerodynamic study of a wing.

Consequently, we shall repeat briefly what has already

been said.

Let us consider a wing which displaces itself along a

line of path which makes an angle i with its chord; a certain

reaction will be borne upon it which may be examined in

its two components Rx and R s respectively perpendicular

and opposite to the line of path, and which shall be called

Lift and Drag, indicating them respectively by the symbols
L and D.

We may then write,

'

D=sxAX (mJ
Where the coefficients X and 6 are functions of the angle
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of incidence, and define a type of wing, and A is the total

surface of wing. The wing efficiency is given by
L X

D
"

d

and measures the number of pounds the wing can sustain

for each pound of head resistance.

In Chapter I, we have given the diagrams for X, 6 and

- as functions of i for two types of wings; consequently,
o

it is unnecessary to record further examples.

For a complete aerodynamical study of a wing, it is

necessary to determine in addition to the diagrams of

X, 6 and -> as functions of i, also the diagram of the ratio

x

p as a function of i, which defines the position at the center

of thrust (see Chapter II) . Knowledge of the law of varia-
/v

tion of ^ as a functon of i, is necessary to enable the

study of the balance of the airplane.

In the reports on aerodynamical experiments conducted

in various laboratories, American, English, Italian, etc., the

reader will find a vast amount of experimental material

which will assist him in forming an idea of the influence

borne on the coefficients X and 5, not only by the shape
and relative dimensions of the wings, as for instance the

,. span , thickness of the wing .

ratios , , 7-7?: ~. and r j T-TT
-

> but also
chord of the wing chord of the wing

by the relative positions of the wings with respect to each

other; such as multiplane machines with superimposed

wings, with wings in tandem, etc.

In the study of coefficients of resisting surfaces, in gen-

eral, solely the knowledge of the component R d is of interest;

the sustaining component 7 x is equal to zero, or is of a

negligible value as compared with that of R s . We then
have

R 8
= K X A X ,

1QO
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where K is a function of i, and A measures the surface of

the major section of the form under observation, taken

I I! I

perpendicular to the axis of symmetry of the body, or to

the axis parallel to the normal line of path.
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In general, the head resistance is usually determined for

only one value of i, that is, for the value corresponding to

normal flight. In fact, it should be noted that an airplane

normally varies its angle of incidence within very narrow

limits, from to 10; now, while for wings such variations

of incidence bring variations of enormous importance in

the values of L as well as in those of D, the variation of

coefficient K for the resistance surfaces is relatively small.

Consequently, in laboratories, only one value is found.

Nevertheless, exception is made for the wires and cables,

which are set on the airplanes at a most variable inclina-

tion, and therefore it is interesting to know coefficient K
for all the angles of incidence.

A table is given below compiled on the basis of Eiffel's

experiments, which gives the value of K for the following
forms (Fig. 77), and for a speed of 90 feet per second:

A = Half sphere with concavity facing the wind,
B = Plain disc perpendicular to the wind,
C = Half sphere with convexity facing the wind,
D =

Sphere,
H = Cylinder with ends having plain faces, with axis

parallel to the wind,
/ = Cylinder with spherical ends, with axis parallel to

the wind,
E = Cylinder with axis perpendicular to the wind,
F = Airplane strut fineness ratio J,
G = Airplane strut fineness ratio >,
L = Airplane fuselage with radiator in front,M =

Dirigible shape,
N = Airplane wheel without fabric, and

0\= Wheel covered with fabric.

TABLE 3

A
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In the above table, one is immediately impressed by
the very low value for the dirigible form. Its resistance

is about 10 times less than that of the plain disc.

The preceding table contains values corresponding to a

speed of 90 ft. per sec. If the law of proportion to the square
of the speed were exact, these values would also be available

for other speeds. On the contrary, at different speeds these

eo

50

40

30

10

10 20 30 40 50 60 TO SO 90 100 110 Speed

Ft. per Sec.

FIG. 78.

values vary. An example will better illustrate this point.

In Fig. 78 diagrams are given of the variation of K
for the forms A and D, and for the speed of from 13 to

100 ft. per sec. (Eiffel's experiments). We see that coef-

ficient K of form A, increases with the speed, while that of

D decreases. These anomalies can be explained by admit-

ting that the various speeds vary the vortexes which are

formed behind the bodies in question, therefore varying

the distribution of the positive and negative pressure

zones, and consequently the coefficients of head resistance.
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Figs. 79 and 80 give the diagrams of the coefficient K, for

the wires and cables (Eiffel); for the wires, coefficient K
first decreases, then increases; for the cables instead,

the value of K shows an opposite tendency. Finally,

40

30

10 20 30 40 50 60 70 80 90 100 110 Speed
Ft. perSec.

FIG. 79.

40

30

i.O ZO 30 40 50 60- 70 30 90 100 1 10 Speed
Ft. per Sec.

FIG. 80.

Fig. 81 gives the diagram showing how coefficient K
varies for the wires and cables when their angle of incidence

varies from to 90.
In studying the airplane, it is more interesting to know

the total head resistance than that of the various parts;
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if we call AI, A z ,
. . . and A n the major sections of the

various parts constituting the airplane and which produce
a head resistance, (fuselage, landing gear, wheels, struts,

wires, radiators, bombs, etc.), and KI, K2 ,
. . . and Kn ,

1.0

o.a

^

0.4

0.2

(
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where a = KiAi + K2A 2 + . . . KnA n and is called the

total coefficient of head resistance of the airplane.

As to the study of the drift surfaces, it is accomplished

by taking into consideration only the drift component, and

not the component of head resistance, as the latter is

negligible with respect to the former. Furthermore, in

this study it is interesting to know the center of drift at

various angles of drift, in order to determine the moments
of drift and then- efficaciousness for directional stability.

When the line of path lies out of the plane of symmetry,
all the parts of the airplane can be considered as drift

surfaces. Nevertheless, the most important are the fusel-

age, the fin, and the rudder. From the point of view of

drift forces, the fuselages without fins and without rudders,

may be unstable
;
that is, the center of drift may be situated

before the center of gravity in such a way as to accentuate

the path in drift when this has been produced for any
reason whatsoever.

For what we have already briefly said in speaking of the

rudder and elevator, and for what we shall say more dif-

fusely in discussing the problems of stability, it is opportune
to know both of the coordinates of the center of drift,

which define its position on the surface of drift.

Finally, we shall make brief mention of the aerodynamical
tests of the propeller.

Let us suppose that we have a propeller model rotating
in the air current of an experimental tunnel. By measur-

ing the thrust T of the propeller, its number of revolutions

n, the power P absorbed by the propeller, and the velocity
V of the wind, it is possible to draw the diagrams pf T,

Pj and the efficiency p. Numerous experiments by Colonel

Dorand have led to the establishing of the following
relations

;

T = a.' n 2D 2

P = a n 3D
TV a' V

P =
P

=
a
X UD
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where D is the diameter of the propeller, and a and a are

numerical coefficients which vary with the variation of

y
~- This ratio is proportional to the other

V
_ velocity of translation

it-nD
~

peripheral velocity

which defines the angle of incidence of the line of path with

respect to the propeller blade.

y
Knowing the values of a' and a as functions of

^>

it is possible to obtain those of T, P, and p, thereby possess-

ing the data for the calculation of the propeller.



CHAPTER VIII

THE GLIDE

Let us consider an airplane of weight W, of sustaining

surface A, and of which the diagrams for X, 6 and the total

head resistance a, are known.

Let us suppose that the machine descends through the

air with the engine shut off; that is gliding. Suppose
the pilot keeps the elevator fixed in a certain position

maintaining the ailerons and the rudder at zero. Then if

R

the airplane is well balanced, it will follow a sloping line of

path 6 (Fig. 82), which will make a well-determined angle
of incidence i, with the wing; in fact, if this angle should

vary, some restoring couples (see Chapter II), tending to

keep the machine at incidence i, would be produced.
Let us study the existing relations among the parameters

W, A, X, 6, <r, 6 and V. When the machine has reached its

normal gliding speed (that is, V = constant), the forces

102
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acting on it are reduced only to the weight W, and the total

air reaction R. By a known theorem of mechanics, all the

forces acting on a body in uniform rectilinear motion,
balance each other; that is, in this case force R is equal and

of opposite direction to W\ that is,

R + W =

Let us consider the two components Rx and Rs of R (on the

line of the path and perpendicular to the line of path).

The preceding equation can then be divided into two others

R d + W sin 6 = (1)

Rx + W cos B = (2)

Let us express the components Rx and R s as function of

X, 5, a and 7. Remembering what we have said in the

preceding chapters,

Rx
= 10-4 XAF 2

Where Rx is expressed in lb., A in sq. ft., V in m.p.h.

and X is a coefficient which depends upon the angle of

incidence and of which the law of variation must be found

experimentally.

As to R s its expression results from the sum of two terms,

/ V \ 2

one due to the wings 5 X A X iTHn) and the other due to

parasite resistances a of the form

,100,

Thus we shall have

The equations (1) and (2) become

10-4
(dA + (7) V 2 = - W sin e (3)

10- 4 XAF2 = -- W cose (4)

We have immediately, by squaring and by adding the

preceding equations
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and dividing (3) by (4)

x

5
+ ^ = tan*

-

(6)

As, once the angle of incidence i is fixed, the values X and <5

are fixed, equations (5) and (6) enable us to find, cor-

responding to each value of i, a couple of values and V.

Thus all the elements of the problem are known.

Equation (5) enables us to state the following general

principles :

1. Other conditions being equal, the gliding speed is

W
directly proportional to the ratio-.-* that is, to the unit

A.

load on the wings.

2. Other conditions being equal, the gliding speed is

inversely proportional to the coefficient X; therefore with

wings having a heavily curved surface and consequently of

great sustaining capacity, the descending speed is much
lower than with wings having a small sustaining capacity.

3. Other conditions being equal, the gliding speed is

inversely proportional to the value of sum (5 + ^r\ which

represents ~r for V = 100 m.p.h.
A.

\

Equation (6) enables us to state the following general

principles :

4. Other conditions being equal, the angle of glide

is inversely proportional to the ratio -> that is, to the
o

efficiency of the wing.
5. Other conditions being equal, the angle of glide is

directly proportional to the ratio -. between the coeffi-
A.

cient of parasite resistance and the surface of the wings.
This ratio is also usually called coefficient of fineness.

6. The angle of volplaning is independent from the

weight of the airplane. This weight doesn't influence but
the speed. In other words, by increasing the load, the

gliding speed will increase but the angle of descent will not

Change.
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With this premise we propose, following a method sug-

gested by Eiffel, to draw a special logarithmic diagram which

will enable us to study all the relations existing among the

variable parameters of gliding.

-3-2-10123456789

0.50 10

0.25 5

7.5

Let us go back to formulas (3) and (5) and write them

in the following form

-TFsin e = 10~ 4
(dA

W
(10= V [10-* (dA +cr)]

Furthermore let us assume

A = 10- 4 XA

A = 10- 4
(dA + o-)

(7)

(8)
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Then the preceding equations become

- sin . W = A

(9)

(10)

Now, as for each value of the angle of incidence i, 5, X and

<r, are known, and as A is constant, we can, by means of

equations (7) and (8), determine a couple of values of A

and A and consequently of \/A2 + A 2 and A corresponding
to each value of i; it will be then possible to draw the

logarithmic diagram of \/A 2 + A 2 as function of A. A
numerical example will better explain this.

Let us consider an airplane having the following charac-

teristics :

W = 2700 Ib.

A = 270 sq. ft.

o- = 160 (average value between i = andi = 9).

X, d functions of i as from the diagram of Fig. 83.

We can then compile the following table:

TABLE 4

i
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logarithmic graduation (Fig. 84). We shall have a loga-

rithmic diagram which gives

A/A 2 + A 2 = /(A)

or

,-/!
Let us consider any part whatever of this curve for in-

stance the point A; the abscissa OX. of this point is

nv i W. sinOX = log yj-

Now log
-

j^
511

- = log W]+ log ( sin 0) 2 log V

Therefore we can consider OX as the algebraic sum of the

segments log W, log ( sin 0) and 2 log V.

Analogously the ordinate of point A is

W
OY = log f2

W
and as log ^ = log W 2 log 7, we can consider OY as

the algebraic sum of the two segments log W and 2 log 7.

Thus in order to pass from the origin to the point A of

the diagram it is sufficient to sum the segments log W,

log ( sin 0) and 2 log 7, following the axis of the ab-

scissae and log W and 2 log 7, following the axis of the

ordinates.

As evidently, the segments can be summed in any order

whatever, we can sum them in the following order:

1. Log W parallel to OX.
2. Log W parallel to OY.
3. - 2 log 7 parallel to OX.
4. - 2 log 7 parallel to OF.
5. Log ( sin 0) parallel to OX.

Now, it is evident that the two segments corresponding

to W, can be replaced by a single oblique segment of

inclination 1/1 on the axis OX and of lengths A/2 log W.

Similarly the two segments corresponding to 7 can be
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replaced by a single segment also inclined by 1/1 on OX and

of length \/2 2 + 22
log V. Thus we can pass from the

origin to the point A of the diagram by drawing 3 seg-

ments, two parallel to an axis of inclination 1/1 on OX and
one parallel to OX, and which measure W, V and sin 6

in the respective scales. The condition necessary and suf-

O.OZ A '

O.C3

-0.2 Sine -0.3

FIG. 84.

0.04 0.05 0.06

-0.4 0.5 -0.6

ficient in order that a system of values of W, V and sin

be realizable with the given airplane, is evidently that the
three corresponding segments, summed geometrically start-

ing from the origin, end on the diagram.
The units of measure selected for drawing the diagram of

Fig. 84, are the following:

W in Ib.

V in m.p.h.
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In order to determine the relation between the scales

of \/A2 + A 2 and A 2 and the scales of W, V and sin 6,

it is first of all necessary to fix the origin of the scale of

W and V.

It is convenient to select W equal to the weight of the

airplane, in our case W = 2700 Ib.

W
Furthermore it is convenient that the ratio^ be equal

to any one whatever of the values 1 X 10 X
,
where x is a

whole positive or negative number; thus we have from the

W
equation A = sin 6.^ that the same scale of A, if divided

by 10*, gives the scale of sin 0.

It would be convenient to make x = 1 in order to

keep the scale of sin within the drawing. Then from

2700

72

We have

= 1 X 10- 1

F 2 = 27,000 and V 164.3 m.p.h.

The scale of sin is equal to that of A divided by 10-1
,

that is, multiplied by 10.

Then, making V = 164.3 the corresponding segment is

zero and we pass from the origin to a point of the diagram

by summing geometrically the segments corresponding to

sin and W. Let us consider any point whatsoever B
of the diagram, for instance the point whose coordinates are :

A/A2 + A 2 = 0.3 and A = 0.031

For this point and for V = 164.3, the weight W is repre-

sented by the segment BB'; because

W
+ A 2 :

y-2

substituting the preceding values of \/A 2 + A 2 and F, we

have

W = 8100

that is BB' = 8100
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Let us make now W = 2700; then the corresponding

segment is zero and in order to pass from the origin to

a point of the diagram it would be sufficient to sum geo-

metrically the segment corresponding to sin and V.

Let us take any other point whatsoever C on the diagram,

for instance that whose coordinates are:

-V/A
2 + A 2 = 0.2 and A = 0.0278

For this point and for W = 2700 we shall have, as it is

demonstrated with an analogous process, that CC' = V =

116.3 m.p.h.

---^

e-s'so'
~"""

5m

FIG. 85.

Taking BB' to O'B" on the scale of W and marking
2700 Ib. in 0' and 8100 Ib. in B"

,
the scale of weights will

be individuated. Analogously taking CC' to 0"C" on the

scale of V and marking 164.3 on 0" and 116.3 on C", the

scales of speed will be individuated.

With the preceding scales and for the airplane of our

example weighing 2700 Ib., the diagram of Fig. 84 gives

immediately the pair of corresponding values of sin

and V. In fact for any value whatsoever of sin for

instance, from the point C' correspondent to sin =

0.139, it is sufficient to draw a parallel to the scale of

speeds until it meets the diagram in C; the segment C'C,

read on the scale of the speeds gives the value of the speed
V corresponding to sin 0; in our case C'C = 116.3.

From the diagram we see that by increasing the angle of

incidence, the angle decreases to a minimum, after which
it increases again. This means that the line of path raises

its inclination up to a limit which in our case is equal to
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about 0.1 corresponding to the incidence of 5 to 6; if our

airplane was descending for instance from the height of

1000 ft. it could reach any point whatsoever, situated within

a radius of 9950 ft. (Fig. 85).

Our example, however, is referred to an exceptional case
;

in practice with the present airplanes, the minimum value

of sin is between 0.12 and 0.14. Furthermore the dia-

gram shows the law variation of the speed of the airplane

with a variation of the angle of incidence. It is seen that

it is not safe to decrease too much the angle of incidence

in order not to increase excessively the speed.

In practice the pilots usually dispose the machine even

vertical but for a very short time, so as not to give time to

the airplane to reach dangerous speeds. On the other hand

one has to look out not to increasing excessively the angle

of incidence in order not to fall in the opposite incon-

venience of reducing excessively the speed, which causes

a strong decrease in the sensibility of the controlling

devices and consequently in the control of the machine

by the pilot.

The use of speedometers, today much diffused, is a very

good caution in order that the pilot, while gliding may
keep the speed within normal limits, keeping it preferably

slightly below the normal speed which the machine has with

engine running.

Until now we have treated the rectilinear glide. It is

necessary to take up also the spiral glide which is today the

normal maneuver for the descent.

The spiral descent is accomplished by keeping the

machine turning during the glide. We have seen that a

centrifugal force is then originated

W V 2

<j> = .

g r

equal and opposite to the centripetal force R's which has

provoked the turning (Fig. 86). This force R' s can be pro-

duced by the inclination of the airplane or by the drifting

course of the airplane or by both phenomena. When this
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FIG. 86.
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force is provoked solely by the inclination of the airplane,
that is, when the angle of drift is zero, we say the spiral
descent is correct, the machine then doesn't turn flat;

as in practice this is the normal case, we shall study only
this case. We developed .the discussion for this case as if

the weight were increased from W to W where

cos a

Therefore we can apply the formulae of the rectilinear

gliding, but we shall be careful to consider the angle 6'

of the line of path, with a plane perpendicular to W
instead of the angle of the line of path with the horizontal

;

in fact, as we consider the fictitious weightW instead of the

weight W, we shall have to consider a fictitious horizontal

plane perpendicular to W instead of the horizontal plane

perpendicular to W.
Then equations (3) and (4) become

- w
10- 4

(6A + <r)V
2 = - sin 0' (11)

COS a
- W

10- 4 XA7 2 = - cos 0' (12)
COS a

from which

10- 2 V

sn =

If we make a =
0, we have cos a =

1, and we fall back to

the formula for rectilinear gliding.

Calling V and 6 the values of V and for a =
0, and

calling Va and 0'a the values for the angle a, we have

V VV a.
~ V o ,

-
V COS a

sin 0'a
= sin B

From known theorems of geometry, calling Ba the angle
of the line of path with the horizontal, we have

sin 0' = sin 0^ . cos a
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from which

sin 6

COS a

Resuming, if we suppose that we maintain a certain incidence

i (by maneuvering the elevator) and a certain transverse

inclination a (by maneuvering the ailerons) the airplane

will follow an elicoidal line of path, with speed Va and

inclination to the ground Ba which are given by the equations :

(13)V COS a

and

sin ea
= e515-^

(14)
COS a

where V and 6 are the speed and the inclination of line of

path, corresponding to the rectilinear gliding; it is then

easy, from diagram 84, to obtain the couples of values Va

and sin 6a corresponding to each value of a.

In general, equations (13) arid (14) tell us that in the

spiral descent the angle of incidence being kept the same,
an airplane has a speed and an angle of slope of the line of

path which are greater than in the rectilinear gliding.



CHAPTER IX

FLYING WITH POWER ON

In the preceding chapter we have studied gliding or

flying with the engine off. Let us suppose now, that the

pilot, during any course whatever of gliding, starts the

engine without maneuvering the elevator. Then a new

FIG. 87.

force will appear, other than the weight W and air reaction

R, namely, the propeller thrust, T.

If, instead of weight W, we consider the fictitious weightW resulting from W and T (Fig. 87), all the considerations

made and notations adopted in the preceding chapter
can be applied.

Then
R 8

= T + W cos (90 -0) = T + W sin

Rx
= W cos

115
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or

10-4
(dA + <r)V

2 = T + W sin (1)

10-4 \AV2 = W cos (2)

Eliminating 10~ 4 V 2 from the two equations, we have

(dA + o-) .
- ^ - = T

7 + W sin

from which

T =
(i + -^-W cos -TF sin (3)
\X XA/

Let us suppose that the angle of incidence is fixed, then

X, 5, and <r, will be determined. Equation (3) enables us to

find the value of for each value of T. For T =
0, we

return to the case of gliding. As T increases, cos must

increase, and sin must decrease; that is, the angle
decreases. Value T

,
for which =

0, gives the value

of thrust necessary for horizontal flight. For =
0, we

have cos =
1, and sin =

0; consequently

for all the values T < T
,
the angle B with the horizontal

line is positive; that is, the machine descends. For all the

values T> T
0} the angle B with the horizontal line changes

sign; that is, the line of path ascends. First of all let us

study horizontal flight. Then, as B = equation (1) and (2)

become

T = 10-4
(dA + a) V2

(4)

W = 10- 4 \AV 2
(5)

Now the power PI in H.P. corresponding to the thrust T in

Ib. and to the speed V in m.p.h., it is evidently equal to

= IA7TV
and because of equation (4)

550Pi = 1.47 10- 4
(dA + a) F 3

(6)
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Equations (5) and (6) enable us to draw a very interesting

logarithmic diagram with the method proposed by Eiffel.

Let us have as in the preceding chapter

A = 10~4 \A
A = 10- 4

(dA + a)

Equations (5) and (6) become

W
TT
= A (7)

55QP!

73
= 1.47 A (8)

Let us consider then the airplane of the example used in the

preceding chapter, that is, the airplane having the following
characteristics :

W = 2700 Ib.

A = 270 sq. ft.

er = 160

and whose diagrams of X and 6 are those given in Fig. 83.

Based upon the table given in the preceding chapter we can

compile the following table:

TABLE 5

I



118 AIRPLANE DESIGN AND CONSTRUCTION

x
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Let us consider then any point whatever of this curve

for instance the point A ;
the abscissa OX of this point is

Now log y 3
= log 550Pi 3 log F; thus we can con-

sider OX as the algebraic sum of segment log 550Pi,

and segment 3 log V. Analogously the ordinate of point
A is

W

W
and as log yg

= log W 2 log V we can consider OF as

the algebraic sum of the two segments log W and 2 log

F. Thus, in order to pass from the origin to point A of

the diagram, it is sufficient to add the segment log 550

PI and 3 Jog F along the axes OX and log TF and 2

log F along the axes OF.

Since evidently these segments can be added in any
order whatever, we can take first log 550Pi parallel to the

axes of abscissa, then 3 log F also parallel to the axes

of abscissa, then 2 log F parallel to the axes of ordinates

and finally log W parallel to the axes of ordinates.

Now it is evident that the two segments 3 log F and
2 log F corresponding to F, can be replaced by a single

oblique segment whose inclination is 2 on 3 and whose length
is \/2 2 + 3 2

. log F. Thus we can pass from the origin

to point A by drawing three segments, one parallel to the

axes OX, the second parallel to an axes of an inclination of

2 on 3 and the third parallel to the axes OF which segments
measure in the respective scales PI, F and TF.

The condition necessary and sufficient in order that a

system of values of Pi, F and TF, may be realized with the

given airplane is evidently that the three corresponding

segments, summed geometrically starting from the origin,

end on the diagram.
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The units of measure selected for drawing the diagram
of Fig. 88 are the following:

Pi in H.P.

V in m.p.h.

W in Ib.

In order to determine the relation between the scales

of A and A and the scales of Pi, V and W, it is necessary

to fix the origin of the scale of V] we shall suppose to

assume as origin V = 100 m.p.h. Then for V = 100 m.p.h.,

the coordinates A and A measure also W and P; in fact for

the particular value V = 100 the segment to be laid off

parallel to the scale of V becomes zero and so we go from the

origin to the diagram through the sum of the only two seg-

ments W and P. Let us consider then the point A whose
coordinates are

A = 0.3 and A = 0.0463

Corresponding to these points we shall have

W
100 2

= 0-3 and ^~ = 0.0463

which gives

W --= 3000 Ib. Pi == 84.2 H.P.

Thus the scales of W and Pi are determined.

In order to determine the scale of V we proceed as follows :

Let us give to W and Pi two values whatever, for instance

W = 3000 and PI = 200 H.P.

Applying the usual construction we shall lay off OB =

3000, EC = 200 in the respective scales; from point C
we draw a parallel to the scale V to meet the diagram in

point D. We shall have in CD the corresponding speed.
Now for DA = 0.153. Consequently, as'we have

we will have

V = 140 m.p.h.
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that is, the segment CD laid off in 0"D' gives the scale of

V. The scales being known it is easy to study the way the

airplane acts, that is, it is possible to find for each value

of the speed the value of the power necessary to fly.

In Fig. 88 we have disposed the scales so as to facilitate

the readings; that is we have made the origin 0" of the scale

of V coincide with the intersection of this scale and a line

O'X' parallel to the axis OX and passing through the value

W = 2700 which is the weight of the airplane; and we have

furthermore repeated on O'X' the scale of power.

Then, in order to have two corresponding values of P and

V we draw from any point whatever E on the scale of the

speed, the parallel to OX up to F, point of intersection with

the diagram; we draw then FF' parallel to the scale of the

speed and we have in Ff on O'X' the value of the power

PI corresponding to a speed E. The examination of the

diagram enables us to make some interesting observations.

Let us draw first the tangent t to the diagram which is

parallel to scale V; this tangent will cut the axis O'X'

in a point corresponding to a power of 58 H.P.
;
this is the

minimum power at which the airplane can sustain itself

and the corresponding speed Fmin is 72.3 m.p.h.

An airplane having an engine capable of giving no more

than this power, could hardly sustain itself; it would be,

as one says, tangent, and could only fly horizontally or de-

scend, but could by no means follow an ascending line of

flight.

For all the values of speed greater or lower than the

above value, the necessary power for flying increases. The

phenomenon of power increasing for the decreasing speed

may seem strange; even more so, if the comparison is made

with all other means of locomotion, for which the necessary

power for motion is so much greater as the speed of motion

increases. But we must reflect that in the airplane, the

power necessary for motion is partly absorbed in overcom-

ing the passive resistances, partially in order to insure

sustentation
;
this dynamical sustentation admits a maxi-
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mum efficiency corresponding to a given value of speed,

below which, consequently, the efficiency itself decreases.

Practically, the speed 7min corresponds to the minimum
value which the speed of the airplane can assume. It is

quite true that theoretically the speed of the airplane can

still decrease, but the further decrease is of no interest, as

it requires increase of power which makes the sustentation

more difficult, and therefore the flight more dangerous.

When the speed increases to values greater than 7min ,

the power necessary for sustentation rapidly increases.

The maximum value the airplane speed can assume,

evidently depends upon the maximum value of useful power
the propeller can furnish.

Let P2 be the power of the engine, and p the propeller

efficiency; the useful power furnished by the propeller is

evidently pP2 .

To study flying with the engine running, it is necessary
to draw the diagram pP2 as a function of F, in order to be

able to compare for each value of V, the power pP2 available

for that speed, and the power necessary for flying, also at

that speed.

Therefore, it is necessary to know the following diagrams :

(1) Pi - / (n)

I V \
(2) a = f (~j))>

which gives the value of coefficient a

of the formula Pp
= an*D 5

, corresponding to the power
absorbed by the propeller, and

The first of the three diagrams must be determined in

the engine testing room, and the other two in the aerody-
namical laboratory. When they are known, the determi-

nation of values pP2 as a function of V becomes possible

by using a method also proposed by Eifell, and which
is interesting to expose diffusely.
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Let us consider the equation

Pp
=

or

As we have seen in chapter 6, a = /"" 1 therefore

-'(
Now, instead of drawing the diagram by taking the values

V P
of p: as abscissae, and those of syr. as ordinates on uni-nD nlD 5

form scales, let us take these values, respectively, as

abscissae and as ordinates, on paper with logarithmic

graduation (Fig. 89).
P ( V

Let us now consider a point on the curve -lb =

for instance, point A. The abscissa of this point is OX =
V V

log nD'
but log nD

= log V ~
log n ~

log D
'
conse"

quently we can consider OX as the algebraical sum of the

following three, log V, log n, and log D. Analogously,
p

the ordinate OF of point A, is OF = log ^> and we
71 U

can write OF = log Pp 3 log n 5 log D, considering

OF as the algebraic sum of the following, log P, 3 log n

and 5 log D. Then, in order to pass from the origin 0,

to point A of the diagram, it is sufficient to add log V,

log n and log D following axis OX, and log Pp ,
3

log n and 5 log D following axis OF.
Since evidently these segments can be added in any order

whatever, we can first take log V, then log n parallel to

axis OX, and 3 log n parallel to the axis of the ordinates,

then again log D parallel to the axis of the abscissae, and

5 log D parallel to the axis of the ordinates, and finally

log Pp . Now it is evident that the two segments log n

and 3 log n corresponding to n, can be replaced by a sin-

gle oblique segment with an inclination of 3 on 1 and having
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a length proportional to Jog n. Analogously, the two

segments log D and 5 log D corresponding to D,

SCALE D SCALE

Uo
4x!0"

3
5x!0"

3
6xlO"

3
7xl0

3
&xl0

3
9xiO"

3
10xlO"

3
I

50 60 70 80 90 100 J50 200

V.m.p.h.

FIG. 89.

can be replaced by a single oblique segment with inclina-

tion of 5 on 1 and having a length proportional to log D.

We can definitely pass from origin to point A of the

diagram, by drawing four segments parallel respectively to
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axis OX, to an axis of inclination 3 on 1, to an axis of inclina-

tion 5 on 1, and to axis OF, and which measure V, n, D, and

Pp ,
in their respective scales.

The condition necessary and sufficient for a system of

values of V, n, D and Pp to be realizable with a propeller

corresponding to the diagram, is evidently that the four

corresponding segments (added geometrically starting from

the origin) terminate on the diagram.

The units of measure selected for drawing the diagram of

Fig. 89 are:

V, in miles per hour

n, in revolutions per minute

D, in feet and

Pp in H.P.

In order to determine the relation between the scales

V P
of ^ and and those of V, Pp , n, and D, it is neces-

sary to fix the origin of the scales of n and D. Let us

suppose that the origin of the scale n be 1800 r.p.m. and that

of scale D be 7.5 ft. Then for n = 1800 and D = 7.5 the

V P
coordinates ^ and

3 J^ 5 evidently also measure V and

Pp ]
in fact for these particular values, the segments to be

laid off parallel to the scales n and D, become zero, and so

we go from origin to the diagram by means of the sum of

only the two segments V and Pp . Then, considering for

instance the speed V = 100 m.p.h., it must be marked on

the axis OX at the point where ^
=

i QQQ y 7 5
= 0-0074.

In this way the scale of V is determined.

Corresponding to V = 100 m.p.h. we have (see diagram

Fig- 89) ^^ = 2.46 X 10- 12
; thus, making n = 1800 and

7i U
D = 7.5 we shall have Pp

= 340 H.P.
; marking the value of

p
P = 340 in correspondence to -^ = 2.46 X 10~ 12 deter-

mines the scale of powers Pp .

In order to find the scale of D, make n equal to 1800,

for which the segment n is equal to zero.
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Now, by giving V and Pp any two values whatever

(for instance V = 100 m.p.h. and Pp
= 100 H.P.) by

means of the usual construction a segment BC is determined,
which measures the diameter D on the scale of D. The

p
value of D results from the value ~Tn5 7 which is read on the

diagram at point C; in our case, this value is 2.22 X 10~ 12

and consequently, as Pp
= 100 and n = 1800, we shall

have
100 = 2.2 X 10- 12

1800 3 X
which gives D = 6 ft. Thus, by taking to the scale of D,

starting from origin 0' (which is supposed to correspond
to D = 7.50 ft.), a segment O'D' = BC, and marking the

value 6 ft. on the point D', the scale of D is obtained.

Finally, to find the scale of n, it is sufficient to make D =

7.5, V = 100 m.p.h. and Pp
= 100, and by repeating

analogous construction we find that the segment BC'
p

corresponding to C' is -^ = 2.06; then for Pp
= 100 and

TL U
D = 7.5 the result is n = 1270. Then, by taking to the

scale of n, starting from origin 0" (which by hypothesis is

equal to n = 1800), a segment 0"D" = BC'
,
and marking

the value 1270 r.p.m. on the point D", the scale of n is

defined.

/ V \
Analogously, we can also draw the diagram p = f\~j\r

on the logarithmic paper, by selecting the same units of

measure (Fig. 89).

Let us suppose that we know the diagram P2
= / (n),

(Fig. 90), which is easily determined in the engine testing

room; we can then draw that diagram by means of the

scale n, and the scale of the power shown in Fig. 89

(Fig. 91).

Disposing of the three diagrams

n 3
> 5 \nD

-'
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drawn on logarithmic paper, it is easy to find the values

pP2 corresponding to the values of V.

In fact let us draw in Fig. 91, starting from the origin

of the scale of n, a segment equal to diameter D of the

propeller adopted, measuring D to the logarithmic scale

of Fig. 89, in magnitude and direction. We shall have

400

500

M0
,c
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r500

^450

L400

L350

r300

-150

-100

L

FIG. 91.
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P2 determines the values of P 2 , P and n corresponding to an

even speed.
1

We can then determine for each value of V, the corre-

sponding value P 2 ,
and we can obtain the values p X P2

corresponding to those of V in Fig. 88. This has been done

in Fig. 93. Comparing, in this figure, the values of pP2 and

Pi corresponding to the various speeds, we see that pP2
=

Pi for V = 160 m.p.h.; this value represents the maximum

speed that the airplane under consideration can attain;

in fact for higher values of V, a greater power to the one

effectively developed by the engine at that speed, would be

required.

For all the speed values lower than the maximum value

V = 160 m.p.h. the disposable power on the propeller shaft

is greater than the minimum power necessary for horizontal

flight; the excess of power measured by the difference be-

tween the values pP2 and PI, as they are read on the loga-

rithmic scales, can be used for climbing. The climbing speed
v is easily found when the weight W of the machine is known.

In fact in order to raise a weight W at a speed v, a power of

v X W Ib. ft. = ^7; X v X W H.P. is necessary; we now
oou

dispose of a power pP2 PI, consequently the climbing

speed is given by

that is,

v = "w x (pPz
~

The climbing speed is thus proportional to the difference

pP2 PI; it will be maximum corresponding to the maxi-

mum value of pP2 Pi] in our example, this maximum
is found for V = 95 and corresponding to it v = 33 ft.

per sec.

1 In fact, point A determines a pair of values of V and n, which are com-

patible either to the diagram of the power absorbed by the propeller, or to

the diagram of the power developed by the engine.
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The ratio y gives the value sin which defines the angle

0, as being the angle which the ascending line of path makes

with the horizontal line (Fig. 94). We then have

v = V sin

This equation shows that the maximum v corresponds

to the maximum value of V sin 6, and not to the maximum
value of sin 0; that is, it may happen that by increasing

the angle 0, the climbing speed will be decreasing instead of

increasing.

FIG. 94.

In Fig. 95 we have drawn, for the already discussed ex-

ample, diagrams of v and sin as functions of V. We see

that v is maximum for sin = 0.35; for the value sin =

0.425, which represents the maximum of sin 0, we have
v = 29, which is less than the preceding value.

We also see that in climbing, the speed of the airplane is

less than that of the airplane in horizontal flight, supposing
that the engine is run at full power.
The maneuver that must be accomplished by the pilot

in order to increase or decrease the climbing speed, consists

in the variation of the angle of incidence of the airplane,

by moving the elevator.

In fact, as we have already seen,

W = 10- 4 XA7 2

Fixing the angle of incidence fixes the value of X, and

consequently that of V necessary for sustentation
;
the air-

plane then automatically puts itself in the climbing line

of path, to which velocity V corresponds.
But the pilot has another means for maneuvering for

height; that is, the variation of the engine power by ad-

justing the fuel supply. In fact, let us suppose that the

pilot reduces the power pP 2 ;
then the difference pP2 PI,

will decrease, consequently decreasing V and sin 0. If the
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pilot reduces the engine power to a point where pP2 PI =

0; the result will be v = and sin = 0. We see then the

possibility, by throttling the engine, of flying at a whole

0.45

60 70 80 90 100 110 120 130 140 150 160 170

V.M.p.h.

FIG. 95.

series of speeds, varying from a minimum value, which

depends essentially upon the characteristics of the airplane,

to a maximum value which depends not only upon the

airplane, but also upon the engine and propeller.



CHAPTER X

STABILITY AND MANEUVERABILITY

Let us consider a body in equilibrium, either static or

dynamic; and let us suppose that we displace it a trifle

from the position of equilibrium already mentioned; if the

system of forces applied to the body is such as to restore

it to the original position of equilibrium, it is said that the

body is in a state of stable equilibrium.

In this way we naturally disregard the consideration of

forces which have provoked the break of equilibrium.

From this analogy, some have defined the stability of the

airplane as the "tendency to react on each break of equilibrium
without the intervention of the pilot." Several constructors

have attempted to solve the problem of stability *of the

airplane by using solely the above criterions as a basis.

In reality in considering the stability of the airplane, the

disturbing forces which provoke the break of a state of

equilibrium, cannot be disregarded.

These forces are most variable, especially in rough air,

and are such as to often substantially modify the resistance

of the original acting forces. The knowledge of them and
of their laws of variation is practically impossible; therefore

there is no solid basis upon which to build a general theory
of stability.

Nevertheless, by limiting oneself to the flight in smooth

air, it is possible to study the general conditions to which
an airplane must accede in order to have a more or less

great intrinsic stability.

Let us consider an airplane in normal rectilinear hori-

zontal flight of speed V. The forces to which the airplane
is subjected are:

its weight W,
the propeller thrust T, and
the total air reaction R.

134
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These forces are in equilibrium; that is, they meet in one

point and their resultant is zero (Fig. 96).

The axis of thrust T generally passes through the center of

gravity. Then R also passes through the center of gravity.

Supposing now that the orientation of the airplane with

respect to its line of path is varied abruptly, leaving all

the control surfaces neutral
;
the air reaction R will change

not only in magnitude, but

also in position. The varia-

tion in magnitude has the

only effect of elevating or low-

ering the line of path of the

airplane; instead, the varia-

tion in position introduces a

couple about the center of

gravity, which tends to make
the airplane turn. If this

turning has the effect of re-

establishing the original posi-

tion, the airplane is stable.

If, however, it has the effect

of increasing the displacement,

the airplane is unstable.

For simplicity, the displacements about the three prin-

cipal axes of inertia, the pitching axis, the rolling axis,

and the directional axis (see Chapter II), are usually

considered separately.

For the pitching movement, it is interesting only to

know the different positions of the total resultant R cor-

responding to the various values, of the angle of incidence.

In Fig. 97 a group of straight lines corresponding to the vari-

ous positions of the resultant R with the variation of the

angle of incidence, have been drawn only as a qualitative

example. If we suppose that the normal incidence of

flight of the airplane is 3, the center of gravity (because

of what has been said before), must be found on the

resultant E 3 . Let us consider the two positions Gi and

G2 . If the center of gravity falls on Gi the machine is un-

/
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stable; in fact for angles greater than 3 the resultant is

displaced so as to have a tendency to further increase the

incidence and vice versa. If, instead, the center of gravity
falls in (j2 ,

the airplane, as demonstrated in analogous

considerations, is stable.

FIG. 97.

In general, the position of the center of gravity can be

displaced within very restricted limits, more so if we wish
to let the axis of thrust pass near it. On the other hand,
it is not possible to raise the wing surfaces much with

respect to the center of gravity, because the raising would
produce a partial raising of the center of gravity, and
also because of constructional restrictions.

Then, in order to obtain a good stability, the adoption of
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stabilizers is usually resorted to, which (as we have seen

in Chapter II) are supplementary wing surfaces, generally

situated behind the principal wing surfaces and making an

angle of incidence smaller than that of the principal wing
surface. The effect of stabilizers is to raise the zone in

which the meeting points of the various resultants are,

thus facilitating the placing of the center of gravity within

the zone of stability. Naturally it is necessary that the

intrinsic stability be not excessive, in order that the man-
euvers be not too difficult or even impossible.

The preceding is applied to cases in which the axis of

thrust passes through the center of gravity. It is also neces-

sary to consider the case, which may happen in practice, in

which the axis of thrust does not pass through the center of

gravity. Then, in order to have equilibrium, it is necessary

that the moment of the thrust about the center of gravity

T X t, be equal and opposite to the moment R X r of the

air reaction (Fig. 98). Let us see which are the conditions

for stability.

To examine this, it is necessary to consider the meta-

centric curve, that is, the enveloping curve of all the resultants

(Fig. 99). Starting from a point 0, let us take a group

of segments parallel and equal to the various resultants Ri
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corresponding to the normal value of the speed. Let us

consider one of the resultants, for instance Ri. At point

A, where Ri is tangent to the metacentric curve a, let us

draw oa parallel to b, which is tangent to curve ft at B the

extreme end of R t .

We wish to demonstrate that the straight line oa is a locus

of points such that if the center of gravity falls on it, and the

equilibrium exists for a value of the angle of incidence, this

equilibrium will exist for all the other values of incidence,

Ri

FIG. 99.

(understanding the speed to be constant) . In other words,
we wish to demonstrate that oa is a locus of the points corre-

sponding to the indifferent equilibrium, and consequently it

divides the stability zone from the instability zone.

Let us suppose that the center of gravity falls at G on oa,

and that the incidence varies from the value i (for which we
have the equilibrium) to a value infinitely near i'. If we
demonstrate that the moment of R' { about G is equal to the

moment of R i} the equilibrium will be demonstrated to be
indifferent. Starting from C point of the intersection of

Ri and R'i, let us take two segments CD and CD' equal to

the value R t and R'i respectively. The joining line DD'
is parallel to BB'

'

now when i
1

differs infinitely little from

i, BB' becomes tangent to the curve at point ;
conse-

quently, DD' becomes parallel to tangent 6; that is, also

to straight line ao. Now point C, if i' differs infinitely
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little from i, is coincident with A (and consequently the

segments GC with GA) then the two triangles GCD' and
GCD (which measure the moment of Ri and R'< with

respect to G), become equal, as they have common bases

and have vertices situated on a line parallel to the bases:

that is, the equilibrium is indifferent.

To find which are the zones of stability and instability,

it suffices to suppose for a moment that the center of

gravity falls on the intersection of the propeller axis and
the resultant R i} then the center of gravity will be on R { ',

and since A is on the line oa, it will be a point of indifferent

equilibrium, consequently dividing the line Ri into two half

lines corresponding to the zones of stability and instability.

From what has already been said, it will be easy to establish

the half line which corresponds to the stability, and thus

the entire zone of stability will be defined.

The calculation of the magnitude of the moments of

stability, is not so difficult when the metacentric curve

and the values R> for a given speed are known.

The foregoing was based upon the supposition that the

machine would maintain its speed constant, even though

varying its orientation with respect to the line of path.

Practically, it happens that the speed varies to a certain

extent; then a new unknown factor is introduced, which

can alter the values of the restoring couple. Nevertheless,

it should be noted that these variations of speed are never

instantaneous.

In referring to the elevator, in Chapter II, we have seen

that its function is to produce some positive and negative

couples capable of opposing the stabilizing couples, and

consequently permitting the machine to fly with different

values of the angle of incidence. All other conditions being

the same (moment of inertia of the machine, braking

moments, etc.), the mobility of a machine in the longitudi-

nal sense, depends upon the ratio between the value of the

stabilizing moments and that of the moments it is possible

to produce by maneuvering the elevator. A machine with

great stability is not very maneuverable. On the other hand,
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a machine of great maneuverability can become dangerous,

as it requires the continuous attention of the pilot.

An ideal machine should, at the pilot's will, be able to

change the relative values of its stability and maneuvera-

bility; this should be easy by adopting a device to vary the

ratios of the controlling levers of the elevator. In this way,
the other advantage would also be obtained of being able

to decrease or increase the sensibility of the controls as the

speed increases or decreases. Furthermore, we could

resort to having strong stabilizing couples prevail normally
in the machine, it being possible at the same time to imme-

diately obtain great maneuverability in cases where it

became necessary.

As to lateral stability, it can be denned as the tendency of

the machine to deviate so that the resultant of the forces

of mass (weight, and forces of inertia) comes into the plane of

symmetry of the airplane.

When, for any accidental cause whatever, an airplane

inclines itself laterally, the various applied forces are no

longer in equilibrium, but have a resultant, which is not

contained in the plane of symmetry.
Then the line of path is no longer contained in the plane

of symmetry and the airplane drifts. On account of this

fact, the total air reaction on the airplane is no longer
contained in the plane of symmetry, but there is a drift

component, the line of action of which can pass through,
above or below the center of gravity.

In the first case, the moment due to the drift force about
the center of gravity is zero, consequently, if the pilot does

not intervene by maneuvering the ailerons, the machine
will gradually place itself in the course of drift, in which it

will maintain itself. In the other two cases, the drift com-

ponent will have a moment different from zero, and which
will be stabilizing if the axis of the drift force passes above
the center of gravity; it will instead, be an overturning
moment if this axis passes below the center of gravity. To
obtain a good lateral stability, it is necessary that the axis

of the drift component meet the plane of symmetry of
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the machine at a point above the horizontal line contained

in the plane of symmetry and passing through the center of

gravity; that point is called the center of drift; thus to

obtain a good transversal stability it is necessary that the center

of drift fall above the horizontal line drawn through the center

of gravity (Fig. 100). This result can be obtained by

lowering the center of gravity, or by adopting a vertical

fin situated above the center of gravity, or, as it is generally

done, by giving the wings a transversal inclination usually

called "dihedral". Naturally what has been said of longi-

tudinal stability, regarding the convenience of not having

IfCenter of Drift- falls on thisZone the Machine 'is Laterally Stable

* /
If Center of Drift falls on this Zone the Machine isLaferalty Unstable

FIG. 100.

it excessive, so as not to decrease the maneuverability too

much, can be applied to lateral stability.

Let us finally consider the problems pertaining to

directional stability. The condition necessary for an

airplane to have good stability of direction is, by a series of

considerations analogous to the preceding one, that the center

of drift fall behind the vertical line drawn through the

center of gravity (Fig. 101). This is obtained by adopting
a rear fins.

By adding Figs. 100 and 101, we have Fig. 102 which shows

that the center of drift must fall in the upper right

quadrant.

Summarizing, we may say that it is possible to build

machines which, in calm air, are provided with a great in-

trinsic stability; that is, having a tendency to react every

time the line of path tends to change its orientation rela-

tively to the machine. It is necessary, however, that this
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tendency be not excessive, in order not to decrease the

maneuverability which becomes an essential quality
in rough air, or when acrobatics are being accomplished.

IfCenterof Drift falls on this

Zone the Machine has..^

Directional
,

Instability.

IfCenter of Drift falls on this lone

the Machine has Directional
Stability.

FIG. 101.

Thus far we have considered the flight with the engine

running. Let us now suppose that the engine is shut off.

Then the propeller thrust becomes equal to zero. Let us

Zone within which the Center ofDriftmust

inOrder that the Machine be Tnansversallij
and Directionallu Stable.

FIG. 102.

first consider the case in which the axis of thrust passes
through the center of gravity.

In this case, the disappearance of the thrust will

not bring any immediate disturbance in the longitudinal

equilibrium of the airplane. But the equilibrium between
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weight, thrust, and air reaction, will be broken, and the

component of head resistance, being no longer balanced by
the propeller thrust, will act as a brake, thereby reducing

the speed of the airplane; as a consequence, the reduction of

speed brings a decrease in the sustaining force; thus equi-

librium between the component of sustentation of the air

reaction and the weight is broken, and the line of path
becomes descendent; that is, an increase of the angle of

incidence is caused; a stabilizing couple is then produced,

tending to restore the angle of incidence to its normal

value; that is, tending to adjust the machine for the

descent.

The normal speed of the airplane then tends to restore

itself; the inclination of the line of path and the speed will

increase until they reach such values that the air reaction

becomes equal and of opposite direction to the weight of

the airplane (Fig. 103). Practically, it will happen that

this position (due to the fact that the impulse impressed
on the airplane by the stabilizing couple makes it go beyond
the new position of equilibrium) is not reached until after

a certain number of oscillations. Let us note that the glid-

ing speed in this case is smaller than the speed in normal

flight; in fact in normal flight, the air reaction must balance

W and T, and is consequently equal to \/W z -i^T 2
,

in gliding instead, it is equal to W] that is, calling R' and
R" respectively, the air reaction in normal flight and in

gliding flight,

R^ VW 2 + T 2
I T 2

R"
~~ W \ W2

and calling V and V" the respective speeds, we will have

.

or 4r
" "

VjB"
"

\ W
When the axis of thrust does not pass through the center

of gravity, as the engine is shut off a moment is produced
equal and of opposite direction to the moment of the thrust

with respect to the center of gravity. Thus if the axis
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of thrust passes above the center of gravity, the moment
developed will tend to make the airplane nose up. If

instead, it passes below the center of gravity, the moment
developed will tend to make the airplane nose down.

If the airplane is provided with intrinsic stability, a gliding

course will be established, with an angle of incidence

different from that in normal flight, and which will be

greater in case the axis of thrust passes above the center

of gravity, and smaller in the opposite case. The speed of

gliding in the first case, will be smaller, and greater in the

second case than the speed obtainable when the axis of

thrust passes through the center of gravity.

Naturally, the pilot intervening by maneuvering the

control surfaces can provoke a complete series of equilibrium,

and thus, of paths of descent.

We have seen that when a stabilizing couple is intro-

duced, the airplane does not immediately regain its original

equilibrium, but attains it by going through a certain

number of oscillations of which the magnitude is directly

proportional to the stabilizing couple ;
in calm air, the oscilla-

tions diminish by degrees, more or less rapidly according to

the importance of the dampening couples of the machine.

In rough air, instead, sudden gusts of wind may be en-

countered which tend to increase the amplitude of the

oscillations, thus putting the machine in a position to pro-

voke a definite brake of the equilibrium, and consequently

to fall. That is why the pilot must have complete con-

trol of the machine; that is, machines must be provided
with great maneuverability in order that it may be possible,

at the pilot's will, to counteract the disturbing couple, as

well as to dampen the oscillations. In' other words, if the

controls are energetic enough, the maneuvers accomplished

by the pilot can counteract the periodic movements, thereby

greatly decreasing the pitching and rolling movements.

In order to accomplish acrobatic maneuvers such as

turning on the wing, looping, spinning, etc., it is neces-

sary to dispose of the very energetic controls, not so much
to start the maneuvers themselves, as to rapidly regain the
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normal position of equilibrium if for any reason whatever

the necessity arises.

Let us consider an airplane provided with intrinsic auto-

matic stability, as being left in the air with a dead engine

and insufficient speed for its sustentation. The airplane

will be subjected to two forces, weight and air reaction,

which do not balance each other, as the air reaction can

have any direction whatever according to the orientation

of the airplane and the relative direction of the line of

path.

Let us consider two components of the air reaction, the

vertical component and the horizontal component. The

vertical component partly balances the weight; the differ-

ence between the weight and this component measures

the forces of vertical acceleration to which the airplane is

subjected. The horizontal component, instead, can only

be balanced by a horizontal component of acceleration; in

other words, it acts as a centripetal force, and tends to

make the airplane follow a circular line of path of such

radius that the centrifugal force which is thereby de-

veloped, may establish the equilibrium. Thus, an air-

plane left to itself, falls in a spiral line of path, which is

called spinning. Let us suppose, now, that the pilot does

not maneuver the controls; then, if the machine is pro-

vided with intrinsic stability, it will tend to orient itself

in such a way as to have the line of path situated in its plane
of symmetry and making an angle of incidence with the

wing surface equal to the angle for which the longitudinal

equilibrium is obtained. That is, the machine will tend

to leave the spiral fall, and put itself in the normal

gliding line of path. Naturally in order that this may
happen, a certain time, and, what is more important, a

certain vertical space, are necessary. The disposable ver-

tical space may happen to be insufficient to enable the

machine to come out of its course in falling; in that case a

crash will result.

We see then what a great convenience the pilot has in

being able to dispose of the energetic controls which can
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be properly used to decrease the space necessary for

restoring the normal equilibrium.

Summarizing, we can mention the following general
criterions regarding the intrinsic stability of a machine:

1. It is necessary that the airplane be provided with in-

trinsic stability in calm air, in order that it react auto-

matically to small normal breaks in equilibrium, without

requiring an excessive nervous strain from the pilot;

2. This stability must not be excessive in order that the

maneuvers be not too slow or impossible; and

3. It is necessary that the maneuvering devices be such

as to give the pilot control of the machine at all times.

Before concluding the chapter it may not be amiss to

say a few words about mechanical stabilizers. Their scope
is to take the place of the pilot by operating the ordi-

nary maneuvering devices through the medium of proper
servo-motors. Naturally, apparatuses of this kind, cannot

replace the pilot in all maneuvers; it is sufficient only to

mention the landing maneuver to be convinced of the

enormous difficulty offered by a mechanical apparatus
intended to guide such a maneuver. Essentially, their use

should be limited to that of replacing the pilot in normal

flight, thereby decreasing his nervous fatigue, especially

during adverse atmospheric conditions.

We can then say at once that a mechanical stabilizer is

but an apparatus sensible to the changes in equilibrium
which is desired to be avoided, or sensible to the causes

which produce them, and capable of operating, as a conse-

quence of its sensibility, a servo-motor, which in turn

maneuvers the controls. We can group the various types
of mechanical stabilizers, up to date, into three categories:

1. Anemometric,
2. Clinometric, and

3. Inertia stabilizer.

There are also apparatus of compound type, but their

parts can always be referred to one of the three preceding

categories.
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1. The anemometric stabilizers are, principally, speed
stabilizers. They are, in fact, sensible to the variations of

the relative speed of the airplane with respect to the air,

and consequently tend to keep that speed constant.

Schematically an anemometric stabilizer consists of a

small surface A (Fig. 104), which can go forward or back-

ward under the action of the air thrust R, and under the

reaction of a spring S. The air thrust R, is proportional to

the square of the speed. When the relative speed is equal
to the normal one, a certain position of equilibrium is ob-

tained; if the speed increases, R increases and the small

disk goes backward so as to further compress the spring.

If, instead, the speed decreases, R will decrease, and the

FIG. 104.

small disk will go forward under the spring reaction.

Through rod S, these movements control a proper servo-

motor which maneuvers the elevator so as to put the air-

plane into a climbing path when the speed increases, and
into a descending path when the speed decreases.

Such functioning is logical when the increase or decrease

of the relative speed depends upon the airplane, for instance,
because of an increase or decrease of the motive power.
The maneuver, however, is no longer logical if the increase

of relative speed depends upon an impetuous gust of wind
which strikes the airplane from the bow; in fact, this man-
euver would aggravate the effect of the gust, as it would
cause the airplane to offer it a greater hold.
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Thus we see that an anemometric stabilizer, used by
itself, can give, as it is usually said, counter-indications,
which lead to false maneuvers.

In consideration of this, the Doutre stabilizer, which is

until now, one of the most successful of its kind ever built,

is provided with certain small masses sensible to the inertia

forces, and of which the scope is to block the small anemo-
metric blade when the increase of relative speed is due to

a gust of wind.

2. Several types of clinometric stabilizers have been pro-

posed; the mercury level, the pendulum, the gyroscope, etc.

The common fault of these stabilizers is that they are

sensible to the forces of inertia.

The best clinometric stabilizer that has been built, and
which is to-day considered the best in existence, is the

Sperry stabilizer.

It consists of four gyroscopes, coupled so as to insure the

perfect conservation of a horizontal plane, and to eliminate

the effect of forces of inertia, including the centrifugal

force.

The relative movements of the airplane with respect to

the gyroscope system, control the servo-motor, which in

turn actions the elevator and the horizontal stabilizing

surfaces. A special lever, inserted between the servo-

motor and the gyroscope, enables the pilot to fix his machine
for climbing or descending; then the gyroscope insures the

wanted inclination of the line of path.
There is a small anemometric blade which fixes the air-

plane for the descent when the relative speed decreases.

A special pedal enables the detachment of the stabilizer

and the control of the airplane in a normal way.
3. The inertia stabilizers are, in general, made of small

masses which are utilized for the control of servo-motors;
and which, under the action of the inertia forces and

reacting springs, undergo relative displacement.
In general, the disturbing cause, whatever it may be, can

be reduced, with respect to the effects produced by it, to a

force applied at the center of gravity, and to a couple.
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The force admits three components parallel to three prin-

cipal axes, and consequently originates three accelerations

(longitudinal, transversal, and vertical). The couple can

be resolved into three component couples, which originate

three angular accelerations, having as axis the same principal

axis of inertia. A complete inertia stabilizer should be

provided with three linear accelerometers and three angular

accelerometers, which would measure the six aforesaid

components.



CHAPTER XI

FLYING IN THE WIND

Let us first of all consider the case of a wind which is

constant in direction as well as in speed.

Such wind has no influence upon the stability of the air-

plane, but influences solely its speed relative to the ground.
Let V be the speed proper of the airplane, and W the

speed of the wind; in flight the airplane can be considered

as a body suspended in a current of water, of which the

FIG. 105.

speed U, with respect to the ground, becomes equal to the

resultant of the two speeds V and W] we can then write

(Fig. 105)

U = 7 + W
We see then, that the existence of a wind W changes

speed V not only in dimension but also in direction.

Furthermore, if from a point A we wish to reach another

point B, and co is the angle which the wind direction makes

with the line of path AB, it is necessary to make the air-

plane fly not in direction AB
}
but in a direction AO making

an angle 5 with AB such that the resulting speed U is in

151
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the direction AB. By a known geometrical theorem, we

have

W2 - 2UW cos (180
- 5 - co)

and
W .

sm 8
-^

sin co

A simple diagram is given in Fig. 106, which enables the

calculation of angle 5, when the speeds V and W, and the

angle co which the wind makes with the line of flight to be

covered, is known.

This diagram is constituted of concentric circles, whose

radius represents the speed of the wind, and of a series of

radii, of which the angles with respect to the line OA give

the angles co between the line of path and the wind. Let

us find the angle 6 of drift, at which the airplane must fly,

for example, with a 30 m.p.h. wind making 90 with the

line of path (the drift angle of the trajectory must not be

confused with the angle of drift of the airplane with respect

to the trajectory, of which we have discussed in the chap-
ter on stability). Let us take point B the intersection

of the circle of radius 30 with the line BC which makes

90 with OA
; making B the center, and speed V of the air-

plane the radius, which we shall suppose equal to 100 m.p.h.,

we shall have point C which determines U and 5; in fact OC
equals U, and angle BCO equals d. In our case U =
95.5 m.p.h., and sin 8 = 0.3.

The speed of the wind varies within wide limits, and can

rise to 110 miles per hour, or more; naturally it then be-

comes a violent storm.

A wind of from 7 to 8 miles an hour is scarcely percepti-
ble by a person standing still. A wind of from 13 to 14

miles, moves the leaves on the trees; at 20 miles it moves
the small branches on the trees and is strong enough to

cause a flag to wave. At 35 miles the wind already gathers

strength and moves the large branches; at 80 miles, light

obstacles such as tiles, slate, etc., are carried away; the big

storms, as we have already mentioned, even reach a speed of
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110 miles an hour. As airplanes have actually reached

speeds greater than 110 m.p.h. (even 160 m.p.h.), it would
be possible to fly and even choose direction from point to

point in violent wind storms. But the landing maneuver,

consequently, becomes very dangerous. At least during

the present stage of constructive technique, it is wise not

to fly in a wind exceeding 50 to 60 m.p.h. After all, such

winds are the highest that are normally had, the stronger

ones being exceptional and localized. On the contrary,
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for the aims of an organization, for instance, for aerial mail

service, it would be useless to take winds higher than 30

to 40 m.p.h. into consideration.

If we call M the distance to be covered in miles, V the

speed of the airplane in m.p.h., and W the maximum speed
in m.p.h., of the wind to be expected, the travelling time in

hours, when the wind is contrary, will be

M M
v _ w

450

400

300

200

100

50 100 150

V M.p.h

FIG. 107.

200

When the wind is zero the travelling time will be

M

consequently

V
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Supposing that we admit, for instance in mail service,

a maximum wind of 35 m.p.h., a diagram can easily be

drawn which for every value of speed V, will give the value

100 Y which measures the percent increase in the travel-

ling time (Fig. 107).

This diagram shows that the travelling time tends to

become infinite when V approaches the value of 35 m.p.h.

For each value of V lower than 35 m.p.h. the value 100
-f-

is negative; that is, the airplane having such a speed,

and flying against a wind of 35 m.p.h. would, of course,

A B
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time spent to cover the distance in the opposite direction.

It would be an error to calculate the speed of the airplane

by dividing the space 2D by the sum fa + tz . In fact the

speed in going from AA' to BB f

is equal to

and in going the other way

By adding the two above equations: member to member, we
have

that is

Now this expression has a value absolutely different from
2D

the other --- For example: supposing D = 2 miles, ti
*i ~r 2

= 0.015 hours, and t2
= 0.023 hours, we will have

while

2D
+ t2 0.015 + 0.023

= 105 m.p.h,

When the speed of the wind is constant in magnitude
and direction, the airplane in flight does not resent any
effect as to its stability. But the case of uniform wind
is rare, especially when its speed is high. The ampli-
tude of the variation of normal winds can be considered

proportionally to their average speed. Some observations

made in England have given either above or below 23 per
cent, as the average oscillations; and either more or less

than 33 per cent, as the maximum oscillation. In certain

cases, however, there can be brusque or sudden variations

of even greater amplitude.
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Furthermore, the wind can vary from instant to instant

also in direction, especially when close to broken ground.
In fact, near broken ground, the agitated atmosphere pro-

duces the same phenomena of waves, suctions, and vortices,

which are produced when sea waves break on the rocks.

If the airplane should have a mass equal to zero, it

would instantaneously follow the speed variations of

the air in which it is located; that is, there would be a

complete dragging effect. As airplanes have a con-

siderable mass they consequently follow the disturbance

only partially.

It is then necessary to consider beside the partial dragging

effect, also the relative action of the wind on the airplane,

action which depends upon the temporary variation of the

relative speed in magnitude as well as in direction. The
reaction of the air upon the airplane takes a different value

than the normal reaction, and the effect is that at the center

of gravity of the airplane a force and a couple (and conse-

quently a movement of translation and of rotation), are

produced.
We have seen that in normal flight the sustaining com-

ponent L of the air reaction, balances the weight. That is,

we have

10- 4 \A7 2

If the relative speed V varies in magnitude and direction,

the second term of the preceding equation will become

10~ 4X 1A V' 2
,
and in general we will have

10- 4 X' X A X V 2 A X V 2
$ 10- 4XA7 2

Consequently we shall have first of all, an excess or deficiency

in sustentation and then the airplane will take either a

climbing or descending curvilinear path, and will undergo
such an acceleration that the corresponding forces of inertia

will balance the variation of sustentation.
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If, for instance, the sustentation suddenly decreases, the

line of path will bend downward. In such a case, all the

masses composing the airplane, including the pilot, will

undergo an acceleration g
f

contrary to the acceleration due

to gravity g.

If m is the mass of the pilot, his apparent weight will no

longer be mg but m(g-g') ;
if it were that g'>g, the relative

weight of the pilot with respect to the airplane would

become negative, and tend to throw the pilot out of the

airplane. Thence comes the necessity of pilots and

passengers strapping themselves to their seats.

Let us suppose that an airplane having a speed Vundergoes
a frontal shock of a gust increasing in intensity from W to

W + ATF; if the mass of the airplane is big enough, the

relative speed (at least at the first instant), will pass from

the value V to that of V + ATF; the value of the air reaction

which was proportional to V 2 will become proportional to

(V + ATF)
2

;
the percentual variation of reaction on the wing

surface will then be

(V + ATF)
2 - F 2

= 2 X F X A W + (ATF
2
)

AW /ATF\ 2

v -\v~)

that is, it will be inversely proportional to the s"peed of the

airplane. Great speeds consequently are convenient not

only for reducing the influence of the wind on the length
of time for a given space to be covered, but also in order to

become more independent of the influence of the wind gusts.

Let us now consider a variation in the direction of the

wind. Let us first suppose that this variation modifies

only the angle of incidence i; then the value X will change.
For a given variation At of i, the percent variation of X

will be inversely proportional to the angle i of normal flight.

From this point of view, it would be convenient to fly with

high angles of incidence; this, however, is not possible, for

reasons which shall be presented later.
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Let us now suppose that the gust be such as to make the

direction of the relative wind depart from the plane of

symmetry; there will then be an angle of drift. A force of

drift will be produced, and if the airplane is stable in calm

air, a couple will be produced tending to put the airplane

against the wind and to bank it on the side opposite to that

from which the gust comes. Naturally it is necessary that

these phenomena be not too accentuated in order not to

make the flight difficult and dangerous with the wind across.

We find here the confirmation of the statement that stabiliz-

ing couples be not excessive.





PART III

CHAPTER XII

PROBLEMS OF EFFICIENCY

Factors of Efficiency and Total Efficiency

The efficiency of a machine is measured by the ratio be-

tween the work expended in making it function and the

useful work it is capable of furnishing. For a series of

machines and mechanisms which successively transform

work, the whole efficiency (that is, the ratio between the

energy furnished to the first machine or mechanism and

the useful energy given by the last machine or mechanism),
is equal to the product of the partial efficiencies of the

successive transformations.

To be able to effect the calculation of efficiency in an

airplane, it is necessary to consider two principal groups of

apparatus: the engine-propeller group and the sustenta-

tion group. There is no doubt of the significance of the

engine-propeller group efficiency; it is the ratio between the

useful power given by the propeller and the total power

supplied to it by the engine. The sustentation group

comprises the wings, the controlling surfaces, the fuselage,

the landing gear, etc.; that is, the mass of apparatus which

forms the actual airplane.

For the sustentation group, the efficiency, as it was pre-

viously defined, has no significance, because neither sup-

plied energy nor returned energy is found in it. The

function of the sustentation group is to insure the lifting

of the airplane weight, with a head resistance notably less

than the weight itself. The ratio between the lifted weight
161
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and the head resistance is usually taken as the measure of

the efficiency of the sustentation group.

The lifted load of an airplane is given by the expression

L = 10- 4 XA7 2

and the head resistance is equal to the sum of two terms;

one referring to the wing surface, the other to the parasite

resistances :

D = 10- 4
(5A+<r)V*

Thus the efficiency of the sustaining surface can be

measured by

L \A
D 5A + o-

If p is the propeller efficiency, the product r = p X e can

serve well enough to characterize the total efficiency of the

airplane. Naturally the number r cannot be considered as

a ratio between two works; and it differs from a true and

proper efficiency (which is always smaller than unity) because

it is in general greater than unity, as it contains the factor

e which is always greater than 1. Let us immediately
note that the value of r is not constant, because the values

of and p are not constant. In fact e is a function of X

and 5, which vary with the variation of the angle of inci-

dence i, and p is a function of the speed V and of the number
of revolutions n of the engine. Practically, it is interesting
to know the value of r as a function of the speed, which is

possible by remembering the equation

W = L = 10- 4 \AV 2

In fact W being constant, this equation permits the deter-

mining of a corresponding value V for each value of i, and
therefore the making of a diagram of efficiency e as a func-

tion of speed V. Moreover, by what has already been
mentioned in Chapter IX, when the engine propeller group
is fixed, the value of p as a function of V can be found and
then it is easy to draw the diagram of r as a function of V.
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It is possible to give r a much simpler expression than

the preceding one; thus

obtaining \A and (dA + <r) from the equations

W = 10- 4 XA72

550Pi = 1.47 10-4
(dA + a) V s

and substituting in (1) we have
WV

r = 0.00267P -, (2)

Knowing W, the diagrams p = f(V) and PI = /(F), we
can draw the diagram r = f(V).
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This diagram shows that r is maximum and equal to 6.9

for a value of speed, V = 95 m.p.h., after which it decreases;

for V = 160 m.p.h. for instance (which represents the maxi-

mum speed of the airplane under consideration) r = 3.12;

that is r is equal to 45 per cent, of the maximum value. In

other words our airplane running at its maximum speed,

has an efficiency equal to less than one-half the efficiency

it has at the speed of 95 m.p.h. to which corresponds, to

the maximum climbing speed.

Let us consider again formula (2) ;
since Pi = pP 2 when

the airplane flies horizontally at its maximum speed, equa-

tion (2) can also be written

r = 0.00267 X
W * V

T2

Practically then when we know the maximum speed of

the airplane and the corresponding maximum power of the

engine, it is possible to have the value of r corresponding

to the maximum speed.

This value is much lower than the maximum which the

airplane can give; thus calculating r based on the maxi-

mum speed of the airplane and on the maximum power of

its engine, we would have an imperfect idea of the real

total efficiency.

Now we intend to show that to measure the efficiency

corresponding to the maximum climbing speed is not a

difficult matter.

Let us suppose in fact that the airplane makes a climbing
test and let n be the number of revolutions of the engine
while climbing. Let V be the speed of translation meas-
ured by one of the usual speedometers. Knowing n, we
know the value P' 2 corresponding to the power developed

by the engine.

Such power is absorbed partly by the airplane, and partly

by the work necessary to do the lifting. Let vmax .
be the

maximum climbing speed, which can be measured by ordi-

nary barographs. The power absorbed by flying will be

pr _ VV ^max.

550p'~
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where p is the propeller efficiency which can be estimated

V
with sufficient approximation knowing ~ (V is the hori-

zontal speed corresponding to vmax .).

We then have

V'W
rmaX> ~

M W
r>/ ''max. rv

""5507

that is, by measuring F', v and n, and by estimating p', it

is possible to have a value approximate enough to the maxi-

mum value of the total efficiency. Breguet has proposed
an expression which he calls motive quality, whose magnitude
can be used to give an idea of the efficiency of the airplane.

Let us remember the two equations:

W = 10- 4 \A7 2

PP2
= 0.267 10- 6

(dA +d)7 3

By eliminating V from the two preceding equations, we
have

5 + T
P 2

= 0.267 W* X -4= X - X - -~ (3)

VA p X

The motive quality q is the expression
x%

q =
P
-

Let us remember that

\A

We see that

q = r

That is, q is proportional to r and therefore it measures the

efficiency of the airplane.

Equation (3) can be written
w3

/^

P2
= 0.267 =

VA X q
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from which we have

= 0.267

Also q assumes various values, and its maximum value

corresponds to the maximum of ascending speed z;max .

That is, we have by expressing vmax .
in ft. per second that

0.267 TT*
_ /

VA Z(P'
\ 550p'

which can also be written

IW
147 vl

m"-
550.P2 y^^
W P

'~

W P
Since r- is the load per sq. ft. of the wing surface, and^
is the weight per horsepower of the airplane, vmax . and p' being

known, gmax . is easily calculated. In the preceding example
we have for instance

W P'~ = 10;y =
7.3; v' = 33; P

' = 0.695

consequently

gmax .

=- 0.177



CHAPTER XIII

THE SPEED

In ordinary means of locomotion, speed is usually con-

sidered as a luxury, but in the airplane, it represents an

essential necessity, for the whole phenomenon of sustenta-

tion is based upon the relative speed of the wing surfaces

with respect to the surrounding air.

The future of the airplane, as to its application in every-

day life, stands essentially upon its possibility of reaching

average commercial speeds far superior to those of the most

rapid means of transportation.

When the airplane is in flight, high speeds present dangers

incommensurably smaller than those which threaten a

train or a motor car running at high speed. On the con-

trary we have seen that the faster an airplane is, the better

it fights against the wind. It is quite true that high speeds

present real dangers when landing, but modern speedy

airplanes are designed so as to permit a strong reduction

in speed when they must return to earth.

Let us remember that the two general equations of the

flight of an airplane are:

W = 10- 4 XA7 2
(1)

550P X P2
= 1.47 10- 4

(dA + <r)7
3

(2)

by expressing P2 in H.P. and V in m.p.h. Equation (2)

gives,

We see then, that if we wish to increase V we must increase

P and PZJ decrease 6, A and o-.

The improvement of p is of the greatest importance not

only in order to obtain a higher speed but also in order to

improve the total efficiency. In regard to propellers, we
167
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have discussed their efficiency and the factors which have

influence upon it, and we have seen that p is a function of

y
the ratio ~r-

irnD
y

By drawing the diagram p as a function of
^,

we see

that p passes through a maximum value pmax . after which it

decreases.

y
The value ~ (to which the value pmax . corresponds) is

directly proportional to the ratio ^y
---

7 Let us con-

sider, for instance, three propellers of diameter D', D",
V" and of pitch p'', p", p"

r such that p'/D'<p"/D"<
p'"/D'"] the curves of the efficiencies p, p", p'" will be

such that p'max ., p"max .>
and p'"max . correspond to the three

V y" y" 1

values -, < J-^ < -^=r (Fig. 110).
irnD irnD irnD

^

Now, if with a given machine we wish to have the maxi-

mum horizontal speed, it is convenient to select the pro-

peller of such pitch and diameter so as to give the maximum
efficiency at that speed. In formula (3), the propeller

efficiency is seen to be to the H power; this means that for

each 1 per cent, of increase of the efficiency, the speed
increases only by H per cent.

The increase of the motive power P2 is another means of

increasing the speed; alsoP2 is seen to be to the K power and

consequently at first glance, we may think that for a per-

centual increase ofP2 the same may be applied as that which

has been said for a per cent, increase of p. Practically

though, to increase P2 means adopting an engine of higher

power, consequently of greater weight and different

incumbrance. Thus the change of P2 is reflected upon the

terms 6
,
A and a. It is not possible to translate into a

formula the relation which exists between P2 ,
d

}
A and a.

It is necessary then to make proper verifications for each

successive case.

The value of 6 depends upon the form and profile of the

wing surface; it is smaller for the wings with very flat
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aerofoil, and which for this reason are usually called "wings

for speed.
" For very fast machines, some designers have

even adopted wings with convex instead of concave bot-

toms. Naturally this convexity is smaller than that of

the wing back (Fig. 111). We then also have a negative

pressure below the bottom, and the sustentation is then due
to the excess of negative pressure on the back with respect
to that on the bottom.

The decrease of sustaining surface A also has influence

upon the increase of speed.

FIG. 111.

From this point of view it would then be convenient to

W
greatly increase the load per unit of the wing surface -r-

A.

But remembering equation (1) we have that

lw _!W V
V = 100

Vx
w

This expression states that when
-j-

is given, the value of

V is inversely proportional to

Let us give X the maximum value Xmax . which it is practi-

cally possible to give (the one corresponding to i = 8 to

10). Then the preceding formula gives the minimum value
of the speed it is possible to attain.

Fmi, =100-
Vx

that is, the minimum speed at which the airplane can

sustain itself is directly proportional to A / Conse-
\A

quently if we wish to keep the value of Fmin . within
reasonable limits of safety, it is necessary not to ex-

W
cessively increase the value of -r-

; that is, not to ex-
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cessively reduce the value of A. Practically the value

W
of -T- is kept between 6 and 10 Ib. per sq. ft.

For the sake of interest we shall recall that in the Gordon
Bennett race of 1913, machines participated with a unit

load up to 13 Ib. per sq. ft. Such machines are difficult

to maneuver; are the worst gliders, and naturally require

a great mastery in landing; their practical use would

have been excessively dangerous. For sport and touring
W

machines, the value of -T- must be lowered to values of 6 to
A.

4 and even 3 Ib. per sq. ft.

The decrease of o-, analogous to the increase of p, consti-

tutes one of the most interesting means of increasing speed.

Let us remember that

(7 = 2 KA
that is, it is equal to the sum of all the passive resistances

due to the various parts of the airplane. For decreasing

o- it is then necessary:

1. To reduce the coefficients of head resistance of the

various parts to a minimum,
2. To reduce the corresponding major sections to a

minimum.
In order that the reader may have an idea of the influ-

ence of the five factors p, P 2 , 5, A, and <r upon the speed,

let us suppose that for a given airplane any four of the

above terms are known, and let us see how V varies

with a variation of the 5th element.

Suppose for instance that

p
=

0.7; P 2
= 350H.P.;6 =

0.6; A = 340sq.ft.jo-
= 200.

Then, giving P 2 , 5, A, and a the preceding values, let us

draw the diagram of the equation

V - 155
3

= (Fig. 112).
X 340 + 200

By making 5 vary from the value 0.7 to the value 0.8,

we see that while for p =
0.7, the speed is about 130

m.p.h.; for p = 0.8 it is above 136 m.p.h.; that is, while the
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efficiency increases by 14.3 per cent., the speed increases

by 4.6 per cent.

Analogously the diagram V = /(P2), V = /(), V = f(A),

and V =
/(<r), have been drawn respectively in Figs.

-E
CL

E

130

0.70 Offc 0.74 0.76

P
FIG. 112.

0.73 0.00

113, 114, 115, and 116, always adopting the preceding values
for the constant terms.

All the foregoing presupposes the air density constant
and equal to the normal density; that is, to the one corre-
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spending to the pressure of 33.9 ft. of water and to the tem-

perature of 59F.

137

136

J34

132

131

I3c
feo

V

><J\

A*

370

P2 Hp,

FIG. 113.

400

Now as it is known the density of the air decreases as we
rise in the atmosphere (see Chapter V), following a logarith-

mic law given by the equation

H = 60720 X
P 519

= 60720 log (1)



174 AIRPLANE DESIGN AND CONSTRUCTION

Where H is the height in feet,

p
p^ is the ratio between the pressure at sea level and the

pressure at height H;
t is the Fahrenheit temperature at sea level, and

V is the ratio between the density at height H and the

normal density denned above.

140
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Then let us again take up the examination of the formula
for speed

"

F = 155XT^7F
IHU
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on the motive power in Chapter V, where we saw that the

ratio between the power at height H and that at ground
level is equal to /*

JC

cL

J3I

130

\

\

\
\

\

150 160 170 ISO 190 200

FIG. 116.

The useful power pP2 given by the engine propeller group
is thus a function of the air density; therefore the diagram
pPz = f(V) changes completely with a variation of p. In

Chapter IX we saw how to draw that diagram when the

density is normal; that is, /*
= 1. Let us now consider
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the case of /*
< 1. The ratio = <* is not only a function

of =, but also of
fj,]

and precisely that ratio is proportional

25000

eoooo

15000

10000

5000

A\\
\\

\
NX

0.4

VN

AS

\N

0.5 0.6 0.7 0.8 09 1.0 1.10 120

to

FIG. 117.

Consequently for each value of n a diagram

/>
nee(is t be drawn. In Fig. 118 such diagrams have

been drawn ona logarithmic scale for the propeller family

to which Fig. 89 of Chapter IX refers, and for the values ^ =
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1.0, 0.55, 0.41, 0.25, corresponding, for a temperature of

59 F., to the heights of 0, 16,000, 24,000 and 28,000 ft.

The diagram which gives the motive powerP2 as function

of the number of revolutions is also to be decreased propor-

rrSOO

E450

V m . p.
h .

FIG. 118.

tional to /*. In Fig. 119 we have taken up again the

diagram of Fig. 91 of Chapter IX, drawing it for the preced-
ing values n.

Then by the known construction, we can draw the dia-

grams PP2
= f(V) for the preceding values of /* (Fig. 120).



THE SPEED 179

r550

^500

=450

HOO

^350

i-300

-250

-200

-150

-100

hO
50
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In order to make evident the influence of the decrease

of the air density on the parameter proper of the airplane,

or in other words on the power PI necessary to flying, let

us take up again the general equation of flight

W = 10~4 XA7 2

550Pi = 1.47 X 10-4
(8A + <r) 7 3

and make evident the influence of the air density.

We have seen in Chapter VII that X, 6, and a- vary propor-

tionally to ^; consequently the preceding equations become

W = 10-4
MXAF 2

550Pi = 1.47 X 10- 4
M (dA + er) V s

that is, remembering what has been said in Chapters VIII

and IX

_^=A
and

KKHP
= 1.47A

Then considerations analogous to those developed in the

preceding chapters enable us to take /* into account by

introducing a new scale with a slope of 1/1 on the axis of

the abscissae and to pass from the origin to any point what-

soever of the diagram by summing geometrically four seg-

ments equal and parallel to W, P, V and /*.

As the weight of the airplane is constant and equal to

2700 lb., it is possible according to what has been said also

in Chapter IX, to simplify the interpretation of the diagram,

proceeding as follows:

Let us consider the diagram

A =/(1.47 X A)

for ju
= 1 (Fig. 120). From each point of this diagram let

us draw segments parallel to the scale of ju and which meas-

ures to this scale, the value p = 0.55. Let us join the

ends of these segments. We shall have a new diagram A = /

(1.47A) corresponding to /*
= 0.55. We intend to demon-
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strate that if from any point whatsoever A of this diagram
we draw a parallel to the scales of V and P, we shall have

in A' and A" respectively a pair of corresponding values

of speed V of power PI for /*
=

0.55, that is at the

height of 16,000 ft. In fact let us call A'" the meeting

point of the straight line AA '" drawn parallel to the scale

of
ju, on the original diagram. By construction AA"' is

equal to 0.55. Let us suppose now that we wish to find

the corresponding pairs of values V and PI for W =
2700 and /*

= 0.55. Then it will be sufficient to draw from

0' corresponding to 2700 Ib. a parallel to the scale of

power and from A, extreme point of the segment AA"'
corresponding to the value /*

= 0.55 a parallel to the scale

of speed. These two straight lines will meet in A" and
will individuate two segments 0' A" and AA" as measure
of the corresponding power and speed.

Thus, as AA" = 0"A', if we wish to study the flight at

a height of 16,000 ft., it is possible to use the diagram A = /
(1.47A) drawn, by adopting the same scales as said above.

Based upon analogous considerations the diagrams A =

/(1.47A) for fA
= 0.41 and /*

=
0.35, have been drawn.

We then dispose, in Fig. 120 of four pairs of diagrams,
which give the values of Pi and pP2 corresponding to M = 1;

0.55; 0.41 and 0.35, that is, for the heights of 0, 16,000,

24,000 and 28,000 ft. The meeting points of these dia-

grams define the maximum value of the speed which the

airplane can reach with that given engine-propeller group
at the various heights. The diagrams corresponding to the

height of 28,000 ft. do not intersect. This means that for

the airplane of our case the flight would not be possible
at this height.

For the lower altitudes it is possible to draw the diagrams
of the corresponding maximum and minimum speeds (Fig.

121). Let us note immediately that while the maximum
speeds depend essentially upon the engine-propeller group
and consequently can be varied with a variation of the

characteristic of this group the minimum speeds depend
exclusively upon the airplane. From the examination of
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the diagrams of Fig. 120 we see that as we raise in the

atmosphere the maximum speed which the airplane can

reach diminishes gradually while the minimum flying speed
increases accordingly.

It is interesting to study the case (merely theoretical at

the present stage of the technique of the engines) in which

175

150

125

100

75

50

Vmin

1.0 0.75 0.50 0.25

8 8
8 H(t -59)

FIG. 121.

the motive power is not effected by the variation of the air

density but keeps constant at the various heights. We
shall see immediately that in Ihis case the propeller will

greatly increase the number of revolutions; it is then nec-

essary to extend the characteristics of the engine above

2200 revolutions per minute.

Let us suppose that this characteristic be the one of

Fig. 122. We can then draw by the usual construction the
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fc.

F-550



THE SPEED 185



186 AIRPLANE DESIGN AND CONSTRUCTION

pairs of corresponding diagram, which give PI and pP2 .

This has been done in Fig. 123, in which has been drawn

only part of the diagrams containing the intersections
which define the maximum speeds. We see how these
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speeds vary, as they increase and how flight becomes pos-

sible even at 28,000 ft. and for greater altitudes. For our

example we find that the speed at 28,000 ft. is equal to

265 m.p.h., while at sea level it was 160 m.p.h. Thus we
also find that the number of revolutions of the propeller at

28,000 ft. is of 2450 r.p.m. against 1500 r.p.m. at sea level.

Let us note first of all that in practice it would not be

possible to run the engine at 2450 r.p.m. without risking

or breaking it to pieces, if the engine is designed for a maxi-

mum speed of say 1800 r.p.m.

In second place we shall note that it would be practically

impossible to build an engine or a special device such as to

keep the same power at any height whatsoever.

The utmost we can suppose is that the power is kept con-

stant for instance up to 12,000 ft., after which it will natu-

rally begin to decrease again. In order to make a more

likely hypothesis, we shall suppose that the power is kept
constant up to 12,000 ft. and then decreases following the

usual law of proportionality.

Based on this hypothesis we have drawn the diagram
of Fig. 124 for the values

M = 1.00; 0.64; 0.55; 0.41; 0.35

We see then that as we raise, the speed increases but much
less than in the preceding case; furthermore after 12,000

ft. the speed remains about constant.

If we could build propellers with diameter and pitch

variable in flight, the operation of the engine-propeller

group would be greatly improved and a great step would

be made toward the solution of the aviation engine for

high altitudes, because the problem of propeller is one of the

most serious obstacles to be overcome for the study of the

devices which make it possible to feed the engine with air

at normal pressure at least up to a certain altitude.



CHAPTER XIV

THE CLIMBING

In Chapter IX we have seen that the climbing speed can

be easily calculated as a function of V, when the' power

p X P2 furnished by the propeller and the power PI neces-

sary for the sustentation of the airplane at that speed, are

known; and we have seen that the climbing speed v (ex-

pressed in feet per second), is given by

pP2 -Pi
550 W

pi.f(y)

FIG. 125.

Practically, the maximum value #max .
of the climbing

speed, obtained when the difference pP2 PI is maximum,
is of interest to us

(pP 2 Pi) max.= 550 W

Thus if we wish to increase the climbing speed it is neces-

sary to make the value (pP2 Pi) max .
the maximum possible.

Let us suppose that the power P2 be given; then first of

all it is necessary that the airplane be built so that the mini-

mum value of PI be the lowest possible; in the second place
it is necessary that the propeller be selected so as to give

188
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the maximum efficiency, not at the maximum speed of the

airplane, but at lower speeds, in order to increase the

difference pP2 PI.

Fig. 125 shows how this can be accomplished; the dia-

grams p' and p" correspond to two propellers having
different ratio p/D. While the propeller p' is better for speed
than p", the propeller which corresponds to the lower value

of p/P is decidedly better for climbing.

Thus, practically, it is possible to adopt an entire series

of propellers on a machine, to each one of which corresponds

two special values for the maximum horizontal and climbing

speeds. Naturally the selection of the propeller will

be made according to whether preference is given to the

horizontal speed or to the climbing speed.

In order to study in full details, the climbing of an air-

plane in the atmosphere, it is necessary to study the influ-

ence the decrease of the air density has upon the climbing

speed.

Let us, as before, call ju the ratio between the air density

at height H, and at sea level. At sea level ju
= 1 and the

maximum climbing speed is the one given by formula (1).

As the airplane rises, the value n decreases and then

formula (1) should be written

*>max.
=

/(/*)

Referring to what has been said in the preceding Chap-
ter when the characteristics of the airplane for /*

= 1 are

known, it is easy to draw for different values of /*, the curves

PP2 =/(F)andP 1 =/(7)

In Fig. 120 of the preceding chapter w*e have drawn
these curves for the example of Chapter IX, and for values of

M =
1.0, 0.55, 0.41

For convenience, these curves are reproduced in Fig. 126.

Comparing the pairs of curves corresponding to the

same value of /*, it is easy to plot the diagram which gives
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the climbing speed at the various heights. In Fig. 127 we
have drawn this diagram, taking vmax as abscissae and H
as ordinates.

It is interesting to draw the diagram

t = f(H)

24000

20000

I6UOO

12000

8000

4000

10 20 30 4O

"V (max) ft.per sec.

FIG. 127.

giving the time spent by the airplane in reaching a certain

height H. To construct this diagram it is necessary first of

all to draw the diagram of the equation

I
= /(#) Fig. 128a,

which is easily obtained, from

v = f(H)
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0.40

0.30

-|t>
0.20

0.10

6000 12000 IQOOO 24000

1500

1000

500

6000 12000 15000 24000

H(Ft)

FIG. 128.
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By integrating
1 = f(H) we have t = f(H), (Fig. 128 6).

In fact the elementary area of the diagram - = f(H) is

equal to

1
X dH

v

but
dH

consequently
1
X dH = dt

v

and

'- X dH = t
(-Jv

that is, the integration of diagram - = f(H) gives t.

In Fig. 128 a, b, we have drawn the scales of H for t =
59. Since by increasing H the value v tends toward

zero, that of - tends toward
}
and consequently that of t

also tends toward <. That is to say, when the airplane

reaches a certain height, it no longer rises. It is said then,

that the airplane has reached its ceiling.

In actual practice the time of climbing is measured by
means of a registering barograph. In Fig. 129 an example
of a barographic chart has been given. This chart gives

directly the diagram

H=f(f)
that is, it gives the times on the abscissae and the heights
on the ordinates. Since to reach its ceiling, the airplane
would take an infinitely long time, practically the

ceiling is* usually defined as the height at which the

ascending speed becomes less than 100 ft. per minute.

It is advisable to stop a little longer in studying the

influence the various elements of the airplane have upon
the ceiling*
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Let us again consider the formula

v = 550 X pP 2 -P
W

and let us place in evidence the influence of /* on the differ-

ence pP2 Pi.

Supposing that we adopt a propeller best for climbing;
that is, one which gives the maximum efficiency correspond-

ing to the maximum ascending speed, we can, with sufficient

practical approximation, assume p constant; then, since Pi
varies proportionally to

/*, the useful power available, can

Be represented by
MPP2

As for Pi,

550Pi = 1.47 X 10-4
(SA + er)7

3

but

W = 10- 4 XA7 2

thus eliminating V from the two preceding equations

Pi = 267 X 10-' (SA + ) X

Now 5, Vj and X are proportional to
/*, therefore

P! = 267 X 10- 8
(/*SA + M<r

= 267 X 10-3
=: (5A +

and we can then write

Since the ceiling is reached when v = 0, it will correspond
to value //, which makes the second term of the preceding

equation equal to zero.

267 X10- 3 TF*

That is

*"*' xZ
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Remembering that

H = 60,720 log
-

M

the maximum value #max .
of ceiling will be

#ma. = 60,720 X log
1

that is

tf_ = 60,720 log

We "can then enunciate the following general principles:

1. Every increase of p, P2 ,
and \A increases the ceiling of

the airplane and vice versa.

2. Every -decrease of dA, a, and W similarly increases

the ceiling and vice versa.

Equation (1) can also be put into the following form:

ffma*. = 60,720 log gA+ ^
"

H

where

P = propeller efficiency

X = lift coefficient of wing surface

W
pr

= weight lifted per horsepower

= total resistance per square foot of wing
A.

surface.

W
T- = load per square foot of wing surface.A

We then have five well-determined physical quantities
which influence the value Hmax . As an example, and with

a proceeding analogous to that adopted for the study of

horizontal speed, we shall give to these parameters a series

of values, and then, making them variable one by one, we
shall study the influence of this variation upon Hl
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Let us suppose for instance that

p
= 0.8; X = 22

W^ = 6 Ib. per H.P.
f*

dA + = 1.2

W
- = 6 Ib. per sq.ft.

A.

35000

34000

33000

Hmax.= 1pj22.0x24l
3.3lx I.I3x3.3L1

197

0.7Z 0.74 0.7 078 0.80

FIG. 130.
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Then it is easy to draw the following diagrams on a paper

having the logarithmic graduation on the axis of the ab-

scissae OX, and the normal graduation on the axis OY:

Hmax=
0.8x2.41

3.3k 1.13x3.31

3WW

30000

26000

X

1 22000

x;

18000

14000

10000
I
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for
6 X A + 0-

199

variable from 1.2

H

A ] A
to 1.8 (Fig. 133)

/W\ W=
f( ~A I

^or
~A

va ^e from 6 to 9 Ib. per sq. ft.

(Fig. 134)

04UV
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2400
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parts of the airplanes are values differing but little from

each other and which can be considered with sufficient

approximation equal to

P = 0.75 X = 16

Man r8* 22 -0x2 -41 1
H max=

60900!og
[ 3.31*(8^ x 3.31 J

a?uw

32000

31000

50000

29000

31

25000

27000

26000

25000
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and consequently

! 8A +

27000

25000

\

V

6.0 6.5 70 75 8.0 8.5 9.0

_W_

FIG. 134.

Now, in a well-constructed airplane, the minimum value
T->

of -~
is between 0.15 and 0.18. Assuming 0.15, we shall

have

= 0.15
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and for X = 16

dA = 2.4

Hmax :

24000

2ZOOO

ZOOOO

16000

14000

12000

sooo

6000

4000

2000

\
\

8 9 10 II 12 13> 14 15 16 17 18 19 20

. W/P2

FIG. 135.

Then formula (2) becomes

H fin 790 i
-75^ X 16 X 10+2^ x .

--
60,720, log
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that is

H^. = 60,720 log
17 ' 65

/W\*
(A)

Based on this formula, we have plotted the diagrams of

Fig. 135 which makes it possible to find Hmax . rapidly and

with sufficient practical approximation when the weight,

power and sustaining surface of the airplane are known.



CHAPTER XV

GREAT LOADS AND LONG FLIGHTS

In studying the history of aviation, the continuous in-

crease of the dimensions of airplanes and of the power of

engines, is decidedly marked. From the small units of 30

to 40 H.P. with which aviation started, we have to-day at-

tained engines which develop 600 H.P. and more.

It is interesting to transfer to 'a diagram the history of

the increase of the power of the engines from 1909 to the

end of 1918, that is the progress of aviation engines in 9

years (Fig. 136).

IVU

600

500

"400
0>

CO

H300

200

100

!
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(including pilot, gasoline and armament), and two seater

machines that with 400 H.P. and more can barely carry

a total useful load of 1300 Ib.

Now certainly it is not by carrying some hundred pounds
of useful load and by having the possibility of covering two

j

or three hundred miles without stopping, that the airplane I

will be able to make its entrance among the practical means j

of locomotion. It is necessary that the hundreds of pounds

and miles, become respectively thousands. To be able
j

to traverse great distances of land and sea with safety,

carrying a load such as to make these crossings commercial,
j

is the great future of mercantile aviation.

To-day then, the vital problems of aviation are: the in-

crease of the useful load and the increase of the cruising,

radius.

At first glance one may think that the two problems

coincide; this is only partially true, each one having proper

characteristics, as it will better be seen in the following

part of this chapter.

Let us start with the examination of the problem of useful

load.

Let us call W the weight of the airplane and U the useful

load; since U is a fraction of W we can write

U = uW
where u is naturally less than 1.

Remembering the expression of total efficiency of the

airplane
WV

r = 0.00267 ^̂
2

we can also write

U =

That equation shows that in order to increase the useful

7*

load it is necessary to increase u, the ratio
y,

and P2 -

(a) The coefficient u = gives the per cent, which is
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represented by the useful load with respect to the total

weight of the airplane. Let us consider two airplanes

having equal dimensions and forms; let us suppose that

the weight be W for both, and the useful loads instead be

different and equal to U\ and C72 . Then we, shall have

respectively

Let us further suppose that the engine be the same for

both airplanes, and that its weight be equal to e X W]
then, calling o'i X W and a2 X W, the weights of the struc-

ture, that is, the weights of the airplanes properly speaking

considered without engine and without useful load, we will

have

W = u,W + eW + a,W
W = u 2W + eW + a 2W

and subtracting member from member

Ui u 2
= a2 ai

That is to say if u\ > u%, W\ shall have a 2 > ai, and vice versa;

that is, if the useful load of the first machine is greater than

that of the second, the weight of its structure will instead be

less. Now the weight of the structures, if the airplanes

are studied with the same criterions and calculated with

the same method, evidently characterize the solidity of the

machine; and in that case the airplane having a lesser weight
of structure, also has a smaller factor of safety, and if this

is under the given limits, it may become dangerous to use it.

Therefore, it is undesirable to increase the value of u = ^
by diminishing the solidity of a machine.

It may also happen that two machines having different

weights of structure, can have the same factor of safety,

and in that case, the machine having less weight of structure

is better calculated and designed than the other. The
effort of the designer must therefore be to find the maximum
possible value of coefficient u, assigning a given value to the
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factor of safety and seeking the materials, the forms and the

dispositions of various parts which permit obtaining this

coefficient with the minimum quantity of material, that is,

with minimum weight. In modern airplanes, the coeffi-

cient u varies from the minimum value 0.3 (which we have

for the fastest machines, as for instance the military scouts),

to the value of 0.45 for slow machines.

The low value of u for the fastest machines depends upon
two causes:

1. The factor of safety, necessary for very fast machines,

must be greater than that necessary for the slow ones, there-

40 6O V 80'Vo V-- IOO V, KQ

FIG. 137.

fore the value of coefficient a in the fast machines is

greater than in the slow ones, with a consequent reduction

of the value u.

2. A fast machine having the same power, must be lighter

than a slow machine (see the formula of total efficiency).

That is to say, the importance of coefficient e increases, and

therefore u diminishes.

(b) In Chapter XII, we studied coefficient r and saw that

it was a function of V. Let us now study ratio y and find

in it the maximum value to be put in the formula of useful

load.
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Fig. 137 shows the diagram r = f(V) already given in

Fig. 109 of that chapter. The diagram refers to a par-

ticular example; its development, however, enables making
some considerations of general character. From origin

let us draw any secant whatever to the diagram. This, in

general, will be cut in two points A' and A"-, let us call r'

and r" the values of efficiency and V and V" the values of

speeds corresponding to these points.

Then evidently
r' r"

=-. == tana

T
Since we seek the maximum value of y>

in order to have

two values r and V such that their ratios will be the

maximum possible, it will suffice to draw tangent t from

origin to point A of the diagram,

To
=r = tanamax .

y o

Therefore infinite pairs of speeds V and V" exist, re-

spectively greater and smaller than V
,
which individual-

T
ize equal values of ratio y ; naturally one would choose only

the values of speed 7', which are greater.

Practically it is not possible to adopt the maximum
A*

value
y->

as the airplane would be tangent, and could there-

fore scarcely sustain itself; it is then necessary to choose a

lower value of
y-

and corresponding to a speed Vi>V .

The value
y-

must be inversely proportional to the height

to be reached. In fact the equation
WV

r = 0.00267 2LL
r*

T W
states that ^ is proportional to ^-- Now as the maxi-

y *2
Wmum height Hmax is a function of
p-> consequently it is also

a function of -
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(c) We treat finally the problems which relate to the

increase of power P 2 -

The increase of motive power has the natural consequence
of immediately increasing the dimensions of the airplane.

The question naturally arises, "up to what limit is it

possible to increase the dimensions of the airplane ?"

First of all it is necessary to confute a reasoning false in

its premises and therefore in its conclusions, sustained by
some technical men, to demonstrate the impossibility of an

indefinite increase in the dimensions of the airplane.

The reasoning is the following:

Consider a family of airplanes geometrically similar, having
the same coefficient of safety.

In order that this be so, it is necessary that they have a
W

similar value for the unit load of the sustaining surface -r ,

and for the speed, as it can be easily demonstrated by virtue

of noted principles in the science of constructions. Let us

furthermore suppose that the airplanes have the same
total efficiency r.

Then, as

WV
r = 0.00267 ^~

f\

and as r and V are constant, W will be proportional to P2 ;

that is the total weight of the airplane with a full load will

be proportional to the power of the engine

W = pP2

The weight of structure a X W of airplanes geometric-

ally similar, is proportional to the cube of the linear dimen-

sions, which is equivalent to the cube of the square root of

the sustaining surface; then

aW = a'AH

W
but r constant, therefore A is proportional to W and

A.

consequently we may write

aW = a"W*
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that is

a = a"Wy'

Since the weight of the motor group e X W is propor-

tional to the power P 2 ,

e X W = e' X P2

but

p, =
P

so

e xW =-W
P

that is

e = constant

Then as

u + a -f e = 1

we will have
u = 1 -- e -

and this formula states that the value of coefficient u di-

minishes step by step as W increases, that is, as the dimen-

sions of the machine increase step by step, until coefficient

u becomes zero for that value of W which satisfies the

equation

1 - e - a" y"W =

that is

TF-'A^V
V a," /

Thus the useful load becomes zero and the airplane would

barely be capable of raising its own dead weight and the

engine. So for example supposing

e = 0.25 a" = 0.004

we shall have

^ = fe^V= 35,000 lb.

Now all the preceding reasoning has no practical founda-

tion, because it is based on a false premise, that is, that the

airplanes be geometrically similar.
,

In fact, it is not at all
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necessary that it be so; on the contrary, the preceding

reasoning demonstrates that to enlarge an airplane in geo-
metrical ratio would be an error.

Nature has solved the problem of flying in various ways.
For example, from the bee to the dragon fly, from the fly

to the butterfly, from the sparrow to the eagle, we find

wing structures entirely different in order to obtain the

maximum strength and elasticity with the minimum
weight.

It may be protested that flying animals have weights far

lower than those of airplanes; but if we recall, that along-
side of insects weighing one ten thousandth of a pound,
there are birds weighing 15 lb., we will understand that if

nature has been able to solve the problem of flying within

such vast limits, it should not be difficult for man, owing to

his means of actual technical knowledge, to create new
structures and new dispositions of masses such as to make

possible the construction of airplanes with dimensions far

greater than the present average machines.

For example, one of the criterions which should be

followed in large aeronautical constructions is that of dis-

tributing the masses. The wing surface of an airplane
in flight must be considered as a beam subject to stresses

uniformly distributed represented by the air reaction, and
to concentrated forces represented by the various weights.
Now by distributing the masses respectively on the wing
surface, we obtain the same effect as for instance in a girder

or bridge when we increase the supports; that is, there will

be the possibility of obtaining the same factor of safety by
greatly diminishing the dead weight of the structure.

Another criterion which will probably prevail in large

aeronautical constructions, is the disposition of the wing sur-

faces in tandem, in such a way as to avert the excessive

wing spans.

The multiplane dispositions also offer another very vast

field of research.

As we see, the scientist has numerous openings for the

solution; so it is permissible to assume that with the in-
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crease of the airplane dimensions not only may it be possi-

ble to maintain constant the coefficient of proportionality

u but even to make it smaller. Thus with the increase of

power we shall be able to notably increase the useful load.

Concluding, we may say that the increase of useful load

can be obtained in three ways :

(a) Perfecting the constructive technique of the airplane

and of the engine, that is reducing the percentage of dead

weights in order to increase u,

(6) Perfecting the aerodynamical technique of the ma-

chine, reducing the percentage of passive resistance and

increasing the wing efficiency and the propeller efficiency,
T

so as to increase the value of ratio y corresponding to the

normal speed V, and

(c) Finally, increasing the motive power.
Let us now pass to the problem of increasing the cruising

radius. Let us call ASmax .
the maximum distance an

airplane can cover, and let us propose to find a formula

which shows the elements having influence upon $max .

The total weight W of the airplane is not maintained

constant during the flight because of the gasoline and oil

consumption; it varies from its maximum initial value

Wi to a final value Wfy which is equal to the difference

between Wi and the total quantity of gasoline and oil

consumed.

Let us consider the variable weight W at the instant t,

and let us call dW its variation in time dt.

If P is the power of the engine and c its specific con-

sumption (pounds of gasoline and oil per horsepower), the

consumption in time dt will be

cPdt

and since that consumption is exactly equal to the decrease

of weight in the time dt, we shall have

dW = - cPdt (1)

From the formula of total efficiency we have

P = 0.00267
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then substituting that value in (1)

dW = - 0.00267cTF - dt
r

and since

dS
~

dt

.
= - 0.00267c

TF r

and integrating

'cdS- 0.00267 J
The value of c, specific consumption of the engine, can,

with sufficient approximation, be considered constant for

the entire duration of the voyage.

Regarding r, we have already seen that it is a function

of V; we shall now see that it is also a function of W.
In fact, let us suppose that we have assigned a certain value

Vi to F; then the total efficiency will be

W W
r = 0.002677! ~ = const X ~

Supposing now that W is made variable; it would also vary

P, following a law which cannot be expressed by a certain

simple mathematical equation; it will then also vary ratio

W
p-

and consequently r.

Practically, however, it is convenient, by regulating the

motive power and therefore the speed, to make value r

about constant and equal to the maximum possible value.

We can also consider an average constant value for r.

Thus the preceding integration becomes very simple. In

fact, as W = Wi for S =
0, and W = Wf for S = S

we shall have,
c

log e Wf
= - 0.00267 - Smax + log e

T

that is
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and introducing the decimal logarithm instead of the

Napierian

<
r
- x log IP (i)
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2400
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JJ 2000
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x

(f)

1600

1200

800

400

WL
Wf

C=0.43

v//

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

"Wf
FIG. 138.

The cruising radius therefore depends upon three factors :

1. Upon the total aerodynamical efficiency. This de-

pendency is linear; that is to say, an increase of say 10 per



GREAT LOADS AND LONG FLIGHTS 215

cent, of aerodynamical efficiency, equally increases the

maximum distance which can be covered by 10 per cent.

2. Upon the specific consumption of the engine. That

dependency is inverse; thus, for example, if for we could

3600

3200

2600

2400

- 2000

x
a
E
ID

1600

1200

400

1.0

Wi

W///

-t,

7f

A

C=0.54

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Wf
FIG. 139.

reduce the specific consumption to half, the radius of action

would be doubled.

3. Upon the ratio between the total weight of the airplane
and this weight diminished by the quantity of gasoline and
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oil the airplane can carry. That ratio depends essentially

upon the construction of the airplane; that is, upon the

ratio between the dead weights and the useful load.

S max - 865 -- log

3600

3200

2800

2400

2000
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500
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7
V/
/

i.o

/
X

C=0.60

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

WL

FIG. 140.

We see, consequently, that the essential difference between
the formula of the useful load and that of the cruising radius

is in the fact^that in the latter the total specific con-

usmption of the engine, an element which did not even
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appear in the other formula, intervenes and has a great

importance. From that point of view, almost all modern
aviation engines leave much to be desired; their low weight

per horsepower (2 Ib. per H.P. and even less), is obtained at

a loss of efficiency; in fact they are enormously strained in

their functioning and consequently their thermal efficiency

is lowered.

The total consumption per horsepower in gasoline and

oil, for modern engines is about 0.56 to 0.60 per H.P. hour;

while gasoline engines have been constructed (for dirigibles),

which only consume 0.47 Ib. per H.P. hour.

A decrease from 0.60 to 0.48 would lead, by what we have

seen above, to an increase in the cruising radius of 25

per cent.

Starting from formula (1) we have constructed the dia-

grams of Figs. 138, 139 and 140 which give the values of

W-
$max. as a function of -^ for the different values of r and c.

In Fig. 138 it has been supposed that c = 0.48 Ib. per H.P.

hour, in Fig. 139 c = 0.54 and in Fig. 140 c = 0.60. The

diagrams have a normal scale on the ordinates and a

logarithmic scale on the abscissae.

The use of the diagrams is most simple, and permits

rapidly of finding the radius of action of an airplane when
.Wi

r, c and ^-, are known.
W f

Before closing this chapter, it is interesting to examine

as table resuming the characteristics of the best types of

military airplanes adopted in the recent war, for scouting,

reconnaissance, day bombardment, and for night bombard-

ment.

In Table 6 the following elements are found:

Wi = weight of the airplane with full load.

Wf
= weight of the empty machine with crew and

instruments necessary for navigation.
W-
^~

= ratio between initial weight and final weight.

We shall suppose therefore that all the useful load, com-

prising military loads, consists of gasoline and oil.
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P = maximum power of the engine.
W-
-p

1 = weight per horsepower.

W
p = load per unit of the wing surface.

A.

^max.
= the maximum horizontal speed of the airplane.

^max.
= the maximum ascending speed averaged from

ground level to 10,000 ft.

W - X v
p> _ _ is the power absorbed in horsepower

0.75 X 550

to obtain the ascending speed umax., supposing a propeller

efficiency equal to 0.75.

ip p/
V = Vmax.^j-_-- is the horizontal speed of the

airplane for which we have the maximum ascending speed

' max.* W V V
r = 0.00267- ^-

- is the total efficiency cor-

responding to 7max ..

W X V
r' = 0.00267

-jr^pr is the total efficiency corre-

sponding to V.
S and S' = the maximum distances covered in miles

W- W-
corresponding to Fmax.r>^ and V, r',

-==^ respectively,

supposing c = 0.60.
Of

~- = the gain in distance covered, flying at speed V
instead of V.

85 P
W'i = 375 X r' X

'

yf
is the total weight the air-

plane can lift at speed V , supposing an allowance of

excess power of 15 per cent.

W' f
= Wf + M (W^ - W<) is the new value of the

final weight, supposing that ^ of the gain in weight is

necessary to reinforce the airplane so as to have the same
factor of safety.

r = the new ratio between the new initial weight
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and the new final weight.Ŵ = the new load per unit of wing surface.
A.w

-p-^
= the new load per horsepower.

S" = the maximum distance covered corresponding to

W-̂
and to r

1

'.

The examination of Table 7 enables making the following

deductions:

1. Whatever be the type of machine it is convenient to

fly at a reduced speed 7', because in that way the cruising

radius increases.

2. All war airplanes are utilized very little as to useful

load and consequently as to cruising radius. As column
o//

pT- shows, they could have a radius of action far superioro
if their enormous excess of power could be renounced. The

gain is naturally stronger for the more light, quick air-

planes, as for instance the scout machines, than for the

heavier types.



PART FOUR

DESIGN OF THE AIRPLANE

CHAPTER XVI

MATERIALS

The materials used in the construction of an airplane are

most varied. The more or less suitable quality of material

for aviation can be estimated by the knowledge of three

elements: specific weight, ultimate strength and modulus

of elasticity.

Knowing these elements it is possible to calculate the

coefficients

ultimate strength in pounds per square inch

specific weight in pounds per cubic inch

and

_ modulus of elasticity in pounds per square inch

specific weight in pounds per cubic inch

The coefficients A\ and A z are not plain numbers, but have

a linear dimension, and a very simple physical inter-

pretation can be given to them; that is, AI measures the

length in inches which, for instance, a wire of constant

section of a certain material should have in order to break

under the action of its own weight; A 2 instead, measures

the length in inches which a wire (also of constant section)

of the material should have in order that its weight be

capable of producing an elongation of 100 per cent.

The higher the coefficients AI and A z ,
the more suitable

is a material for aviation.

It may be that two materials have equal coefficients AI
and A 2 ,

but different specific weights. In that case the

221



222 AIRPLANE DESIGN AND CONSTRUCTION

material of lower specific weight is preferable when there

are no restrictions as to space; instead, preference will be

given to the material of higher specific weight when space

is limited. This because of structural reasons, or in order

to decrease head resistance.

In all of the following tables whenever possible, we shall

give the values of specific weight and coefficients AI and

A,.

We shall briefly review the principal materials, grouping
them into the following broad categories :

A. Iron, steel and their manufactured products.
B. Various metals.

C. Wood and veneers.

D. Various materials (fabrics, rubbers, glues, varnishes,

etc.).

A. IRON, STEEL AND THEIR COMMON FORM AS USED IN
AVIATION

Iron and steel are employed in various forms and for

various uses; for forged or stamped pieces, in rolled form
for bolts, in sheets for fittings, plates, joints, in tinned or

leaded sheets for tanks, etc.

FIG. 141.

In Table 7 are shown the best characteristics required
of a given steel according to the use for which it is

intended.

Steel wires and cables are of enormous use in the con-
struction of the airplane. Tables 8 and 9 give respectively
tables of standardized wires and cables.
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TABLE 8. SIZES, WEIGHTS AND PHYSICAL PROPERTIES OP STEEL WIRE
English Units

American
wire

gage
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TABLE 9. WEIGHTS, SIZES AND STRENGTH OF 7 X 19 FLEXIBLE CABLE

English units
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Wires with larger threaded ends (called "tie rods")

(Fig. 144), are becoming of general use. A very good
attachment can be obtained by covering the bent wire

with brass wire and soldering the whole with tin (Fig.

145); in this way an attachment is obtained which gives

FIG. 143.

FIG. 144.

FIG. 145.

FIG. 146.

100 per cent, of the wire resistance. The soldering is made
with tin in order to avoid the annealing of the wire.

The best attachment of cables is made by so-called

splicing after bending it around a thimble (Fig. 146), which
is made either of stamped sheets or of aluminum (Fig. 147).
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Steel is also much used in tube form, either seamless,

cold rolled, or welded. Table 10 gives the characteristics

of the steel of various tube types.

FIG. 147.

Perimeter = 6.62d

Area

FIG. 148.

Tables 11 and 12 give the standard measurements of

round tubes with the values of weight in pounds per foot

and the values of the polar moment of inertia in in. 4
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Steel tubing having a special profile formed so as to give

a minimum head resistance is also greatly used for inter-

plane struts as well as for all other parts which must

necessarily be exposed to the relative wind.

The best profile (that is, the profile which unites the

best requisites of mechanical resistance, lightness and air

penetration) is given in Fig. 148 which also shows how it

is drawn, and gives the formulae for obtaining the peri-

meter, the area, and the moments of inertia Ix and Iy

about the two principal axes as function of the smaller

diameter d and thickness t.

Tables 13 and 14 give all the above mentioned values,

and furthermore the weight per linear foot for the more

commonly used dimensions.

A greatly used fitting in aeronautical construction is the

turnbuckle, which is designed to give the necessary tension

to strengthening or stiffening wires and cables.

A turnbuckle is made of a central barrel into which two
shanks are screwed with inverse thread; the shanks have
either eye or fork ends; thus we have three classes of

turnbuckles :

Double eye end turnbuckle (Fig. 149a)

Eye and fork end turnbuckle (Fig. 1496)
Double fork end turnbuckle (Fig. 149c)
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For turnbuckles as well as for bolts, the reader may easily

procure from the respective firms, tables of standard

measurements with indications of breaking strength.

B. VARIOUS METALS

Table 15 gives the physical and chemical characteristics

of various metals most commonly used; that is, copper,

brass, bronze, aluminum, duraluminum, etc.

Copper and brass are generally used for tanks, radiators,

and the relative piping systems.

Aluminum is used rather exclusively to make the cowling
which serves to cover the motor. Aluminum can also be

used for the tanks.

High resistance bronzes are used for the barrels of turn-

buckles.

Tempered aluminum alloys, have not become of general
use at all, because their tempering is very delicate and it is

easily lost if for any reason the piece is heated above 400F.
We call especial attention to the untempered aluminum

alloy which, not requiring any treatment, has a resistance

and an elongation comparable to those of homogeneous
iron, although its specific weight is % that of iron.

C. WOODS

Wood is extensively used in the construction of the

airplane; either in solid form or in the form of veneer.

Tables 16 and 17 give the characteristics of the principal

species of woods used in aviation. l

Cherry, mahogany, and walnut are used especially for

manufacturing propellers. For the wing structure, yellow

poplar, douglas fir, and spruce are especially used.

Yellow birch, yellow poplar, red gum, red wood, mahog-
any (true), African mahogany, sugar maple, silver maple,

spruce, etc., are especially used in manufacturing veneers.

Great attention must be exercised in the selection of the

1 This table has been compiled by the Forest Products Laboratory. U. S.

Forest Service. Madison, Wisconsin.
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TABLE 16. PROPERTIES o

Strength Values at 15 Per Cent. Mo

Common and botanical names
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F VARIOUS HARD WOODS
isture, for Use in Airplane Design

bending
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TABLE 17. PROPERTIES

Strength Values at 15 Per Cent. M
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OF VARIOUS CONIFERS

oisture, for Use in Airplane Design

bending
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Supposing that we have two kinds of wood of modulus

EI and E2 and specific weight Wi and TF2 respectively; and

suppose that coefficient A 2 be the same for both kinds,

that is EI Ez

FT' W*

DOU6LAS FIR ELM

FIG. 150.

Let us call 7\ and 72 the moments of inertia which the

section must have respectively, according as to whether it is

made of one or the other quality of wood. If we wish the

piece to have the same resistance in both cases then
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that is

AiWi xS = A 2W,^-Xt*
i - i

from which

W l xS = W2 x^ (1)

The weights per linear inch evidently will be in both cases

W l X zi
2 and TF2 X x2

2

and their ratio w will be

W2 X
But from (1)

Wi X xS =
W2 X z2

2
~

consequently

that is, the piece having the greater section will weigh less,

therefore it is convenient to use the material of smaller

specific weight.

Let us now consider the veneers, which have become of

very great importance in the construction of airplanes.

Wood is not, of course, homogeneous in all directions, as

for instance, a metal from the foundry would be; its struc-

ture is of longitudinal fibers so that its mechanical qualities

change radically according to whether the direction of the

fiber or the direction perpendicular to the fiber is considered.

Thus, for instance, the resistance to tension parallel to the

fiber can be as much as 20 times that perpendicular to the

fiber, and the elastic modulus can be from 15 to 20 times

higher. Vice versa, for shear stresses we have the reverse

phenomenon; that is, the resistance to shearing in a direc-

tion perpendicular to th,e fiber is much greater than in a

parallel direction to the fiber. Now the aim in using veneer

is exactly to obtain a material which is nearly homogeneous
in two directions, parallel and perpendicular to the fiber.

Veneer is made by glueing together three or a greater

odd number of thin plies of wood, disposed so that the fibers
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cross each other (Fig. 151). It is necessary that the num-

ber of plies be. odd and that the external plies or faces

have the same thickness and be of the same quality of wood,

so that they may all be influenced in the same way by

humidity, that is, giving perfect symmetrical deformations,

thus avoiding the deformation of the veneer as a whole.

It is advisable to control the humidity of the plies during

the manufacturing process, so that the finished panels may
have from 10 to 15 per cent, of humidity. If we wish to

FIG. 151.

have the greatest possible homogeneity in both directions,

it is advisable to increase the number of plies to the ut-

most, decreasing their thickness; this also makes the joining

more easy by means of screws or nails, because the veneer

offers a much better hold.

Considerations analogous to those given for the density
of wood, lead to the conclusion that, wishing to attain a

better resistance in bending, it is preferable to use plies

of low density for the core. In fact, the weight being
the same, the thickness of the panels will be inversely

proportional to the density; but the moment of inertia,

and consequently the resistance to column loads are pro-

portional to the cube of the thickness; we see, therefore,
the great advantage of having the. core made of light thick

material.

Light material would also be convenient for the faces, but

they must also satisfy the condition of not being too soft,

in order to withstand the wear due to external causes.

In Tables 18 and 19 we have gathered some of the tests
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TABLE 20. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 21. HASKELITE DESIGNING TABLE FOR THREE-PLY

NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 22. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 23. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 24. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 25. HASKELITE DESIGNING TABLE FOE THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 26. HASKELITE DESIGNING TABLE FOB THREE-PLY
NOT SANDED

Haskelite Research Laboratories Report No. 109

PANELS

Nominal
thickness
of panel
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TABLE 27. HASKELITE DESIGNING TABLE FOR THREE-PLY
NOT SANDED

Haskelite Research Laboratories Report No. 109

PANELS

Nominal
thickness
of panel
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TABLE 28. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS
NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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TABLE 29. HASKELITE DESIGNING TABLE FOR THREE-PLY PANELS

NOT SANDED

Haskelite Research Laboratories Report No. 109

Nominal
thickness
of panel
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to tearing, both in the direction of the woof and the warp,

and by its weight per square foot.

Table 30 gives the characteristics of several types of

fabric. In this table we find for various types the weight

per square yard, the resistance in pounds per square yard

(referring to both woof and warp) and the ratio between the

resistance and weight. We see that silk is the most con-

venient material for lightness; the cost of this material with

respect to the gain in weight is so high as to render its use

impractical.

Fabric must be homogeneous and the difference between

the resistance in warp and woof should not exceed 10 per

FIG. 152.

cent, of the total resistance; in fact the fabric on the

wings is so disposed that the threads are at 45 to the ribs,

thus working equally in both directions and having con-

sequently the same resistance: in the calculations, there-

fore, the minor resistance should be taken as a basis; the

excess of resistance in the other direction resulting only in a

useless weight.

(6) Elastic Cords. For landing gears the so-called elastic

cord is universally adopted as a shock absorber.

It is made of multiple strands of rubber tightly incased

within two layers of cotton braid (Fig. 152). Both the in-

ner and outer braids are wrapped over and under with three

or four threads. The rubber strands are square and are

made of a compound containing not less than 90 per cent.
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of the best Para rubber. The size of a single strand is

between 0.05 and 0.035 inch.

The rubber strands are covered with cotton while they
are subjected to an initial tension, in order to increase the
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FIG. 153.
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work that the elastic can absorb. The diagrams of Figs.

153 and 154 show this clearly.

Fig. 153 give$ the diagram of work of a mass of rubber

strands without cotton wrapping and without initial tension.
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Fig. 154 gives the diagram of the same mass of rubber

strands with an initial tension of 127 per cent., and with

the cotton wrapping.
In general, the elongation is limited for structural rea-

sons; let us suppose for instance, that an elongation of 150

per cent, be the maximum possible. It is then interesting

to calculate the work which can be absorbed by 1 Ib. of

elastic cord having initial tension and cotton wrapping
and to compare it to that which can be absorbed by 1 Ib. of

elastic cord without initial tension and without cotton

200

Initial Tension* 127%

Viameter=053lin
Va ofElementary Strand

Weight, per Yard* 4.727K

50 100 150 200 250 300 350

Loading, Pounds.

FIG. 154.

400 450

wrapping. The work can be easily calculated by measuring
the shaded areas in Figs. 153 and 154. Naturally to do

this it is necessary to translate the per cent, scale of elonga-

tion into inches, which is easy when the weight per yard is

known.

For 150 per cent, of elongation the work absorbed by
1 Ib. of elastic cord without initial tension and without

cotton wrapping is 1280 lb.-in.; while that absorbed by
elastic cord with 127 per cent, of initial elongation is equal to

20,200 lb.-in.; that is, in the second case a work about

16 times greater can be absorbed with the same weight.
This shows the great convenience in using elastic cords

with a high initial tension.
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(c) Varnishes. Varnishes used for airplane fabrics are

divided into two classes: stretching varnishes (called
u
dope")> and finishing varnishes.

The former are intended to give the necessary tension

to the cloth and to make it waterproof, increasing at the

same time its resistance. The finishing varnishes which

are applied over the stretching varnishes have the scope of

protecting these latter from atmospheric disturbances, and
of smoothing the wing surfaces so as to diminish the resist-

ance due to friction in the air.

The stretching varnishes are generally constituted of a

solution of cellulose acetate in volatile solvents without

chlorine compounds. The cellulose acetate is usually con-

tained in the proportion of 6 to 10 per cent. The solvents

mixtures must be such as not to alter the fabrics and not

to endanger the health of men who apply the varnish.

The use of gums must be absolutely excluded because

they conceal the eventual defects of the cellulose film. A
good stretching varnish must render the cloth absolutely
oil proof, and will increase the weight of the fabric by 30

per cent, and its resistance by 20 to 30 per cent.

Finally it should be noted that it is essential for the var-

nish to increase the inflammability of the fabric as little as

possible; precisely for this reason the cellulose nitrate

varnish is used very seldom, notwithstanding its much
lower cost when compared with cellulose acetate.

In general for linen and cotton fabrics three to four coats

of stretching varnish are sufficient; for silk instead, it is

preferable to give a greater number of coats, starting with

a solution of 2 to 3 per cent, of acetate and using more

concentrated solutions afterward.

The finishing varnishes are used on fabric which have

already been coated with the stretching varnishes. These

have as base linseed oil with an addition of gum, the whole

being dissolved in turpentine.

A good finishing varnish must be completely dry in less

than 24 hours, presenting a brilliant surface after the drying,
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resistant to crumpling, and able to withstand a wash with a

solution of laundry soap.

(d) Glues. Glues are greatly used both in manufac-

turing propellers and veneers.

Beside having a resistance to shearing superior to that of

wood, a good glue must also resist humidity and heat.

There are glues which are applied hot (140F.), and those

which are applied cold.

A good glue should have an average resistance to

shearing of 2400 Ib. per sq. in.



CHAPTER XVII

PLANNING THE PROJECT

When an airplane is to be designed, there are certain

imposed elements on the basis of which it is necessary to

conduct the study of the other various elements of the

design in order to obtain the best possible characteristics.

Airplanes can be divided into two main classes : war air-

planes and mercantile airplanes.

In the former, those qualities are essentially desired which

increase their war efficiency, as for instance: high speed,

great climbing power, more or less great cruising radius,

possibility of carrying given military loads (arms, muni-

tions, bombs, etc.), good visibility, facility in installing

armament, etc.

For mercantile airplanes, on the contrary, while the speed
has the same great importance a high climbing power is

not an essential condition; but the possibility of transport-

ing heavy useful loads and great quantities of gasoline and

oil, in order to effectuate long journeys without stops,

assumes a capital importance.
Whatever type is to be designed, the general criterions

do not vary. Usually the designer can select the type of

engine from a more or less vast series; often though, the

type of motor is imposed and that naturally limits the

fields of possibility.

Rather than exposing the abstract criterions, it is more

interesting to develop summarily in this and the following

chapters, the general outline of a project of a given type
of airplane, making general remarks which are applicable

to each design as it appears. In order to fix this idea,

let us suppose that we wish to study a fast airplane to be

used for sport races.

261
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The future aviation races will certainly be marked by

imposed limits, which may serve to stimulate the designers

of airplanes as well as of engines towards the increase of

efficiency and the research of all those factors which make

flight safer.

For instance, for machines intended for races the ultimate

factor of safety, the minimum speed, the maximum hourly

consumption of the engine, etc., can be imposed.
The problem which presents itself to the designer may be

the following : to construct an airplane having the maximum

possible speed and also embodying the following qualities:

1. A coefficient of ultimate resistance equal to 9.

2. Capable of sustentation at the minimum speed of 75

m.p.h. &

3. Capable of carrying a total useful load of 180 Ib. (pilot

and accessories), beside the gasoline and oil necessary for

three hours flight.

4. An engine of which the total consumption in oil and

gasoline does not surpass 180 Ib. per hour when running
at full power.

Let us call W the total weight in pounds of the airplane
at full load, A its sustaining surface in sq. ft., Wu the useful

load in pounds, P the power of the motor in horsepower,
and C the total specific consumption of the engine in oil

and gasoline.

Remembering that in normal flight

W = 10- 4 XA7 2

since the condition is imposed that the airplane sustain

itself for V = 75 m.p.h., we must have

W~ < 0.56 Xmax .

that is, the load per square foot of wing surface will have to

equal 5%00 of the maximum value Xmax which it is possible
to obtain with the aerofoil under consideration.

The total useful load will equal

Wu = 180 4- 3cP
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Let us call Wp the weight of the motor including the

propeller, WR the weight of the radiator and water, WA

the weight of the airplane.

Then

u \ p I It I A \ /

Calling p the weight of the engine propeller group per

horsepower we will have

Wp
= pP

The weight of the radiator and water, by what we have

said in Chapter V, can be assumed proportional to the power
of the engine and inversely proportional to the speed.

R= '

V

As to the weight of the airplane, for airplanes of a certain

well-studied type and having a given ultimate factor of

safety, it can be considered proportional to the total

weight; we can therefore write

WA
= aW

Then (1) can be written

W = 180 + 3cP + pP + b ^ + aW

that is

W =

The machine we must design is of a type analogous to the

single-seater fighter. Consequently in the outline of the

project we can use the coefficients corresponding to that

type.

For these, the value of a is about 0.34; also, expressing V
in m.p.h. we can take b = 45.

Remembering the imposed condition that cP must

not exceed 180 lb., we will have to select an engine having

the minimum specific consumption c, in order to have the

maximum value of P; at the same time the weight p per

horsepower must be as small as possible.
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Let us suppose that four types of engines of the following

characteristics are at our disposal:

TABLE 31

Type
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Let us now determine the sustaining surface.

We have seen that we must have

~-< 0.56 Xmax .

where Xmax is the maximum value it is practical to obtain.

i

-3-2-1 I 2 3 4 5

0.75

0. 50 10

0.25

12.5

10.Q

=16

From the aerofoils at our disposition, let us select one

which, while permitting the realization of the above con-

dition, at the same time gives a good efficiency at maximum
speed.

Let us suppose that we choose the aerofoil having the

characteristics given in the diagram of Fig. 155.

Then as Xmax =
14.4, we must have

;*
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W
For

-j-

= 8 and W = 2130 Ib.

A = 265 sq. ft.

Let us select a type of biplane wing surface adopting a

chord of 65". The scheme will be that shown in Fig. 156.

We can then compile the approximate table of weights,

considering the following groups:

1. Useful Load

Pilot 180 Ib.

Gasoline and oil 477 Ib.

Instruments . . 11 Ib.

Total ....'.... 668 Ib.

2. Engine Propeller Group

Dry engine and propeller 660 Ib.

Exhaust pipes 6 Ib.

Water in the engine 30 Ib.

Radiator and water .. ... 125 Ib.

Total 821 Ib,

3. Wing Truss

Spars 100 Ib.

Ribs 26 Ib.

Horizontal struts and diagonal bracings 20 Ib.

Fittings and bolts 30 Ib.

Fabric and varnish 25 Ib.

Vertical struts 40 Ib.

Main diagonal bracing 35 Ib.

Total 276 Ib.

4. Fuselage

Body of fuselage 155 Ib.

Seat, control stick, and foot bar 25 Ib.

Gasoline tanks and distributing system 40 Ib.

Oil tanks and distributing system 6 Ib.

Cowl and finishing 25 Ib.

Total 251 Ib.

5. Landing Gear

Wheels 32 Ib.

Axle and spindle 25 Ib.

Struts 15 Ib.

Cables 4 Ib.

Total.. 76 Ib.
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6. Controls and Tail Group
Ailerons 12 Ib.

Fin 21b.

Rudder 6 Ib.

Stabilizer 8 Ib.

Elevator.. 10 Ib.

Total 38 Ib.

We can then compile the following approximate table

TABLE 32

Denomination
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FIG. 158.
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Pounds

FIG. 159.
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spuno<j
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the vertical line passing by the center of pressure of the

wings.

2. That the axis of the landing gear be on a straight line

passing through the center of gravity and inclined forward

by 14; that is, by about 25 per cent.

The superimposing has been made in Fig. 160.

The ideal condition of equilibrium is that the center of

gravity, thus found, not only must be on the vertical line

passing by the center of pressure, but must also be on the

axis of thrust
;
if it falls above the axis of thrust it is advisable

that its distance from it be not greater than 4 or 5 inches

at the maximum; if instead it falls below the axis of thrust,

we have a greater margin as the conditions of stability

improve. This shall be seen in Chapter XXI. In our case,

it falls 2.5 in. above the propeller axis.

The center of gravity having been approximately de-

termined we can draw the general outline (Figs. 161, 162

and 163).

It is then necessary to calculate the dimensions of the

stabilizer, fin, rudder, and elevator. To do this, it would

be essential to know the principal moments of inertia of

the airplane. The graphic determination of these moments
is certainly possible but it is a long and laborious task be-

cause of the great quantity and shape of masses which

compose the airplane.

Practically a sufficient approximation is reached by con-

sidering the weight W instead of the moment of inertia.

Then calling M the static moment of any control surface

whatever about the center of gravity (that is, the product of

its surface by the distance of its center of thrust from the

center of gravity) we shall have

WM = a X
y-2

Value a can be assumed constant for machines of the

same type. Then, having determined a based on machines

which have notably well chosen control surfaces, it is easy

to determine M. Value a in our case can be taken equal
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FIG. 161.

50 100

Inches

FIG. 162.

50 100

Inches

//

FIG. 163.
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to 3900 for the ailerons, 2100 for the elevator, and 2500

for the rudder, taking as the units of measure pounds for

W and feet per second for V.

Then it is possible to compile the following table where

a and M have the above significance, I is the lever arm in

feet and S is the surface of the rudder elevator and ailerons

in square feet.

TABLE 33

Controls



CHAPTER XVIII

STATIC ANALYSIS OF MAIN PLANES AND CONTROL
SURFACES

Owing to the broadness of the discussion we shall limit

ourselves to summarily resume the principal methods

used in analyzing the various parts, referring to the ordi-

nary treaties on mechanics and resistance of materials for

a more thorough discussion.

In this chapter the static analysis of the wing truss and of

the control surfaces is given.

30 60In

Scale of Lengths

Fig. 164 shows that the structure to be calculated is com-
posed of four spars, two top and two bottom ones, con-
nected to one another by means of vertical and horizontal

trussings.

For convenience the analysis of the vertical trussings is

usually made separately from the analysis of the horizontal

ones, and upon these calculations the analysis of the main
beams can be made. *

276
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First of all it is necessary to determine the system of the

acting forces. An airplane in flight is subjected to three

kinds of forces : the weight, the air reaction and the pro-

peller thrust.

The weight is balanced by the sustaining component L,
of the air reaction; the propeller thrust is balanced by the

drag-component D. The weight and the propeller thrust

are forces which for analytical purposes can be considered

as applied to the center of gravity of the airplane. The

components L and D instead, are uniformly distributed on

the wing surface. Practically, the ratio - assumes as many

FIG. 165.

different values as there are angles of incidence. The maxi-

mum value, which is assumed in computations, is, usually,

jr
= 0.25. Thus it will be sufficient to study the distribu-

tion of L, because, when this is known the horizontal

stresses can immediately be calculated.

Let us suppose that the aerofoil be that of Fig. 165 and
that the relative position of the spars be that indicated in

this figure. The first step is to determine the load per
linear inch of the wing. Fig. 164 shows that the linear

wing development of the upper wing is 320.48 inches while

that of the lower wing is 288.58 inches.

We know that the two wings of a biplane do not carry

equally because of the fact that they exert a disturbing

influence on each other; in general the lower wing carries

less than the upper one; usually in practice the load per
unit length of lower wing is assumed equal to 0.9 of that
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of the upper wing. Then evidently the load per linear inch

of the upper wing is given by

320.48 +09X 2858 '

and for the lower wing it is given by

0.9 X 3.66 = 3.29 Ib. per inch

From these linear loads we must deduct the weight per

linear inch of the wing truss, because this weight, being

0.43 L 0.57 L

FIG. 166.

applied in a directly opposite direction to the air reaction,

decreases the value of the reaction. In our case the figured

weight of the wing truss is 276 Ib.; thus the weight per
linear inch to be subtracted from the preceding values will

be 0.45 Ib. per linear inch.

We shall then have ultimately:

Upper wing loading 3.21 Ib. per linear inch

Lower wing loading 2.86 Ib. per linear inch

Knowing these loads, it is possible to calculate the dis-

tribution of loading upon the front spars and upon the rear

spars. For this it is necessary to know the law of variation

of the center of thrust.
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It is easily understood that when the center of thrust

is displaced forward, the load of the front spar increases,

and that of the rear spar decreases; and that the contrary

happens when the center of thrust is displaced backward.

We shall suppose that in our case the center of thrust has

a displacement varying from 29 per cent, to 37 per cent,

of the wing cord (Fig. 166). In the first case the front

spar will support 0.62 of the total load and the rear spar

will support 0.38; in the second case these loads will be

respectively 0.43 and 0.57 of the total load.

Thus the normal loads per linear inch of the four spars

can be summarized as follows:

Front spar upper wing. 1.98 Ib. per inch

Bear spar upper wing 1.82 Ib. per inch

Front spar lower wing 1.75 Ib. per inch

Rear spar lower wing 1.62 Ib. per inch

Practically it is convenient to make the calculations

using the breaking load instead of the normal load; in fact

there are certain stresses which do not vary proportionally

to the load but follow a power greater than unity, as we

shall see presently. In our case, as the coefficient must be

equal to 10, the breaking load must be equal to 10 times

the preceding values.

We can then initiate the calculation of the various trusses

which make up the structure of the wings. We shall proceed

in the following order, computing:

(a) bending moments, shear stresses and spar reactions

at the supports. Determination of the neutral curve of

the spars

(6) front and rear vertical trusses

(c) upper and lower horizontal trusses

(d) unit stresses in the spars.

(a) The spars can be considered as uniformly loaded

continuous beams over several supports. In our case there

are four supports for the upper spars as well as for the

lower ones; the uniformly distributed loadings are the

preceding.
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Let us note first, that in our case as in others, the distri-

bution of the spans of the rear spars is equal to that of the

spans of the front spars; thus the only difference between

the front and rear spars is in the load per unit of length.

It suffices then to calculate the bending moments, the shear

stresses and the reactions at the supports for the front

spars; the same diagrams, by a proper change of scales,

can be used for the rear spars. In our case, the unit load-

ing for the rear spars is equal to 0.92 of that for the front

spars.

o as so in.

Scale of Lengths

FIG. 167.

With this premise we shall give the graphic analysis

based upon the theorem of the three moments, but we shall

not explain the reason of the successive operations, referring

the reader to treaties on the resistance of materials. First

consider the upper front spar (Fig. 167); Jet XY be its

length and A, B, C
y D, its supports, made by the struts.

Let each span be divided into three equal parts by means
of trisecting lines aa

i} bbi, cci, etc. For each support with

the exception of the first and last ones, the difference be-

tween the third parts of its adjacent spans shall be deter-

mined; and that difference is layed off starting from the

support, toward the bigger span. In our case we subtract

the third part of span BC from the third part of span AB,
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and the difference is layed off starting from B toward A.

Thus V is obtained. The line mm\ drawn through V per-

pendicular to XY is called counter vertical of support.

Analogously one-third of BC is subtracted from one-third

of CD, and its difference is laid off from C toward D, fixing

a second counter vertical of support nni.

Starting from A (Fig. 167) let us draw any straight line

that will cut the trisecant bbi, and the first counter vertical

of support mrrii in the points E and F respectively.

Draw the straight line EB which prolonged will cut the

first trisecant of the second span cci in the point G. Join

G with F by a straight line which will cut XY at the point

H. This point is called the right-hand point of support B.

Starting from H we draw any straight line that will meet

the second trisecant of the second span ddi and the second

diagonal nni at the points M and N respectively. Find

the point P by prolonging the straight line between M and

C. Point 0, the right-hand point of the second support,

is given by the intersection of line NP and line XY. In

order to find the left-hand points for the supports C and

B, draw the straight line PD which will interest the counter

vertical nn\ at point Q. Point R where the lines MQ and

XY intersect each other will be the left-hand point of

support C. Starting from R draw the line RG which will

cut the first counter diagonal at point S. Point T, the

point of intersection of lines SE and XY will be the left-

hand point of support B.

The right-hand and left-hand points being known, we

shall suppose that we load one span at a time, determining

the bending moments which this load produces on all the

supports. Summing up at every support the moments due

to the separate loads, we shall obtain the moments origin-

ated by the whole load.

The moment on the external supports is equal to that

given by the load on the cantilever ends, as it cannot be

influenced by the loads on the other spans, owing to the

fact that the cantilever beam can rotate around its support.

The load on the cantilever spans however affects the other
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spans. To determine this effect we proceed in the follow-

ing manner: Consider support A (Fig. 168); the moment

at this support is equal to ^p calling w the load in Ib. per

linear inch and I the length of the span in inches. Lay off,

wl2

to any scale, the segment AA' =
-^

*

Let us then draw the straight line AT; it will intersect

the vertical line through support B at point 1; the segment

IB measures, to the scale of moments, the moment that the

load on the cantilevered span produces on support B.

320M In.

50 In.

Scale of Lengths.

8000 16000 In.l

Scale of Moments.

FIG. 168.

Then draw the straight line IE; it will meet the vertical line

through support C at 1'; the segment 1'C measures, always
to the scale of moments, the moment originated on support
C by the load of the cantilevered span. The moment in D
cannot be influenced by the cantilever load on X A.

Let us now determine the effect of the load on span AB,
on the moment of the various supports. Draw FG perpen-
dicular bisectrix of AB and Jay off, to the scale of moments,

a segment FG equal to - -
;
that is, equal to the moment

o

which would be obtained at the center point of AB, by a

unit load w, if AB were a free-end span supported at the

extremities. From T, the left-hand point of support B,
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raise a perpendicular which cuts line GB at W. Draw
line AW to meet the perpendicular through support T at

point 2. The segment B2 read to scale, will give the mo-

ment on support B due to the load on AB.
Point 2' is obtained by prolonging line 2R until it meets

the perpendicular through C at 2'. Segment C-2' represents

to the scale of moments, the moment on support C due to

the load on AB.
In order to find the effect of the load of span BC on the

other spans, proceed analogously; that is lay off ML on the

bisectrix of BC, equal to scale, to the moment ML =
8

Let us find points N and P as indicated in the figure and
let us draw the line NP which prolonged will meet the per-

pendiculars on supports B and C at points 3 and 3'. Seg-
ments B-3 and C-3' read to the scale of moments, will give
the moments produced by the load of span BC on the sup-

ports B and C respectively.

Proceeding as for spans XA and AB we obtain the

moments originated on BC by the loads on spans CB and
BY. The construction is clearly indicated in Fig. 168.

Resuming, we shall have the moment originated by canti-

lever loads on the supports A and D, and the moment
originated by the loads on all the different spans, on the

supports B and C.

For the point of support B the moment due to the canti-

lever load is equal, read to the scale of moments, to dis-

tance B-l, the moment due to the load on AB is equal to

B-2, the moment due to the load on BC is equal to B-3,
the moment due to the load on CD is equal to B-4 f and
that due to the cantilever load on DY is equal to J5-5'. If

we assume that the distances above the axis XY are positive
and those below are negative, the total moment BB' on

support B will be equal to the algebraic sum of the moments

B-l, B-2, B-3, -4', and B-5'.

Analogously the algebraic sum CC' will represent the

total moment on C. The total moment on the external

supports will naturally remain the one due to cantilevers,
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and consequently equal to AA' and DD'. In order to find

the variations of the bending moment on all the spans, the

load being uniformly distributed, we must draw the para-
bolse of the bending moments as though the spans were

simply supported (Fig. 169).

25 50 Inches
Scale of Lengths

8000 16000 InJbj.

Scale of Moments

25 50 Inches

Scale of Leng+hs

8000 I6001n.lte:

Scale of Moments.

FIG. 170.

Then the difference between the ordinates of the parabolse
and those of the diagram AA' E' C' D f D give us the diagram
XA r

a' E' V C' c' D' YX which represents the diagram of

the bending moment (Fig. 169).

Knowing the diagram of the bending moments, it is easy



MAIN PLANES AND CONTROL SURFACES 285

through a process of derivation applying the common
methods of graphic statics, to find the diagram of the

shearing stresses, and consequently the reactions on the

supports (Fig. 170). The scale of forces is obtained by
multiplying the basis H of the derivation, by the ratio

between the scale of moments and that of the lengths. In

Fig. 170 the scale of forces has been drawn, and on the

supports the corresponding numerical values of the

reactions have been marked.

Furthermore, from the diagram of bending moments we
can obtain the elastic curve, which will be needed later.

25 50 In.

Scale at Lengths

8000 16000 In. Ibs.

Scale of Moments

Fia. 171.

15.0 30.0 In x
_

Scale, ot Peflecfions

In fact let us remember that the analytic expression of

the bending moment is given by

MR = E X I X
dx

and consequently

y =
E

that is, by double integration of the diagram of MB we
obtain the deflections y, that is, we obtain the form which

the neutral axis of the spar assumes, and which is called

elastic curve (Fig. 171).

We shall not pause in the process of graphic integration,

as it can be found in treaties on graphic statics.
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We shall make use of the elastic curve for the determina-

tion of the supplementary moments produced on the spars

by the compression component of the vertical and hori-

zontal trussings.

ZO 40 In -

Scale of Lengths

FIG. 172.

Figs. 167, 168, 169, 170 and 171 refer to the calculation

of the upper front spar. In Figs. 172, 173, 174, 175 and

176 instead, the graphic analysis of the lower front spar is

developed.

2S3.58Jn

20 401
Scale of Lengthi

6000 12000 In I bs

Scale of Moments

FIG. 173.

On these figures, beside the unit loads which are already

known, the scale of the moments, of the lengths and of the

forces are also indicated.

The preceding diagrams also give the bending moments,
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the shearing stresses and the reactions on the supports for

the rear spars; in fact it suffices to multiply both the values

of the forces and those of the moments by 0.92, as the spans

are the same, and the loads per linear inch of the rear

spars are equal to 0.92 of the loads of the front spars.

A special note should be made of the scales of ordinates

for the elastic curve; these are inversely proportional to

the product E X /, the elastic modulus by the moment of

inertia, and consequently they vary from spar to spar.

But we shall return to this in speaking of the unit stresses

in spars.

(6) Knowing the reactions upon the supports, it is possi-

ble to calculate the vertical trussings. Since the front

trussing has the same dimensions as the rear one, and since

the reactions on the supports are in the ratio 0.92, it suffices

to calculate only the first.

FIG. 177.

The vertical trussing is composed of two spars, one above,
and the other below, connected by struts capable of resist-

ing compression, by bracings called diagonals, which must
resist tension, and by bracings called counter diagonals
which serve to stiffen the structure (Fig. 177). In flight,
the counter diagonals relax and consequently do not work;
for the purpose of calculation we can consequently con-
sider the vertical trussing as though it were made only of

spars, struts, and diagonals; furthermore, because of the

symmetry of the machine, for simplicity we shall consider

only one-half of it, as evidently the stresses are also sym-
metrical (Fig. 178); the plane of symmetry will naturally
have to be considered as a plane of perfect fixedness.
With that premise let us remember that for equilibrium

it is first of all necessary that the resultant of the external
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forces be equal to zero. The reactions upon the supports
are all vertical and directed from bottom to top ;

their sum
is equal to 5695 lb.; now, this force is balanced by that

part of the weight of the machine which is supported at

point A and which is exactly equal to 5695 lb. Moreover
it is necessary that in any case the applied external force

(reaction at support), be in equilibrium with the internal

reaction; that is, as it is usually expressed in graphic statics,

it is essential that the polygon of the external forces and of

FIG. 178.

the internal reactions close on itself. This consideration

enables the determination of the various internal reactions

through the construction of the stress diagram, illustrated,

for our example, in Fig. 179.

Referring to treaties on graphic statics for the demonstra-

tion of the method, we shall here illustrate, for convenience,

the various graphic operations.

The values of the reactions on the supports individuated

by zones ab, be, cd, and de are laid off to a given scale on

AB, BC, CD, and DE (Fig. 179); from B and C we draw
two parallels to the truss members determined by the

zones bh and ch respectively; in BH we shall have the
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FIG. 180.
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stress corresponding to member bh, and in CH that corre-

sponding to the member ch. From points H and D we

draw the parallels to the members gh and gd] in HG and DG
we shall have the stresses in hg and dg', from points E and G
we draw the parallels to the members determined by zones

ef and <//; in E7^ and (r^ we shall obtain the stresses in

these members; finally from points G and A we draw the

parallels to the members individuated by zones gi and ai,

obtaining the corresponding stresses in GI and AI. The
arrows of the stress diagram enable the easy determination

of which parts of the truss are subjected to tension and

which to compression.

In Fig. 179, beside marking the scales of lengths

and of forces, we have marked the lengths and the

stresses corresponding to the various parts, adopting +
signs for tension stresses, and signs for compression
stresses. By multiplying these stresses by 0.92 we shall

obtain the values of the stresses of the rear trussing.

The counter diagonals which do not work in normal

flight, function only in case of flying with the airplane

upside down. For this case, which is absolutely excep-

tional, a resistance equal to half of that which is had in

normal flight is generally admitted. The determination of

stresses is analogous to that made for normal flight and is

shown in Fig. 180.

Based upon the values found in the preceding construc-

tion, Table 34 can be compiled. That table permits the

calculation of the bracings and struts.

The calculation of the bracings presents no difficulties;

it is sufficient to choose cables or wires having a breaking
strength equal to or greater than that indicated in the table;

naturally the turnbuckles and attachments must have a

corresponding resistance. Table 35 gives the dimensions
of the cables selected for our example. For the principal

bracings we have adopted double cables, as is generally
done in order to obtain a better penetration; in fact not

only does the diameter of the cable exposed to the wind
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TABLE 34

Front vertical truss
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result smaller, but it becomes possible to streamline the

two cables by means of wooden faring.

For the struts, which can be considered as solids under

compression, it is necessary to apply Euler's formula which

gives the maximum load W that a solid of length I with a

section having a moment of inertia 7 can support

In that formula a is a numerical coefficient and E is the

elastic modulus of the material of which the solid is made.

The theory gives the value 10 for coefficient a. We
shall quickly see that practically it will be convenient to

adopt a smaller coefficient in consideration of practical

unforeseen factors.

Let us remember that the struts, being exposed to the

wind, present a head resistance which must be reduced to a

minimum by giving them a shape of good penetration as

well as by reducing their dimensions to the minimum.
This last consideration shows, by what has been said in

Chapter XVI, that for struts it is convenient to use mate-

rials which even having high coefficients AI and A 2 have a

high specific weight.

Then the best material for struts is steel. In Chapter
XVI a table has been given of oval tubes normally used

for struts, with the most important characteristics, such as

weight per unit of length, area of section, relative moment
of inertia, etc.

Let us apply Euler's formula to these tubes, remembering
that for them / =

td*, where t is the thickness and d is the

smaller axis. We shall have

w = a
~p-

Remembering then that the area of these struts is given
with sufficient approximation by the expression A =
Q.37td the preceding formula can be written as follows

W a XE 1
X

6.37
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where

W
r = unit stress of the material

-I
= ratio between that portion of the length which can

be considered as free ended, and the minimum dimension of

the strut.

llx!0
4

10

7

~r~^ 47x 10 x 7T

10 20 30 40 50 60 TO 80 90 100

i

d
FIG. 181.

Adopting pounds and inches as the unit, we have E =

3 X 10 7 and consequently

W 1= 47 X 10 5 X a X (1)
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Naturally this formula can be applied only for high values

of the ratio
^; practically below the value -3

= 60 this

formula can no longer be relied upon. In Fig. 181 the

diagram corresponding to the preceding formula is

given, drawing the diagram with a dotted instead of a

full line for the values of -3 < 60. For these values the

practical diagram is shown by a dot and dash line.

In Tables 36 to 39 we have tabulated the results of some

of the many tests on metal struts which have been made
at our works. In these tables the practical value of coeffi-

cient a of Euler's formula has been calculated; it is seen

that while in some tests a has a value higher than 10,

in general it gives lower values. That depends upon the

struts being partly manufactured by hand and partly rolled,

and also upon the thickness of the sheet and the dimensions

of the sections being not always uniform. Based on aver-

age values we can therefore assume that for properly manu-
factured struts a coefficient a = 8 can be adopted for

computation purposes.

With this premise it is simple, when the ultimate stress

which a strut must withstand, and its length, are known,
to determine its dimensions.

Moreover infinite solutions exist, since formula (1) when
W and I are given, can be satisfied by infinite couples of

values A and d.

Evidently by increasing d, the value of A becomes
smaller and consequently the weight of the strut diminishes

;

from that point of view it would be convenient to use struts

having large dimensions and small thicknesses. However,
the increase of d increases the head resistance of the airplane,
and increases the power necessary to fly.

Therefore it becomes necessary to adopt that solution

which requires the minimum power expension.
If |8 is the weight per horsepower lifted by the airplane,

7 is the weight of one foot of strut of width d, k its coeffi-

cient of head resistance as was definitely stated in Chapter
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VII, V the speed of the airplane in m.p.h., and p the propeller

efficiency, the total power p absorbed by a foot of strut

will be equal to

p = 1 +
l
X 267 X 10- 9

/b^F
3

P p u
Now the weight 7 is equal to

7 = 12 X A X 0.280 Ib. = 3.36A Ib.

where A is expressed in square inches.

In Chapter III we hav seen that k = 3.5 for struts of the

type which we are studying. Then, taking an average
value p = 0.75 we shall have

p = + 103.6 X 10- 9 d7 3

Formula (1) permits expressing A as function of d

A ~

47 X 10 5 X
consequently we shall have

X (
l

a
; <

\dj

+ me x 10- *y

Supposing W, I, a, ]8 and V to be known, the preceding

equation gives the expression of total power (that is, the

resultant of the weight and head resistance), absorbed by
one foot of strut as function of the minor axis d of its section.

Evidently the designer's interest is to find the value of d

that makes p minimum; but that value is the one which

makes the derivative of the second term of the preceding

equation equal to zero, that is, the one which satisfies

the equation

from which
WXl 2

13.8 X
a X ft X F3

Let us remember that the symbols have the following

significance :

W = maximum braking load which a strut must support,

I = length of strut,
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a = coefficient of Euler's formula,

= ratio between the total weight and power of the

airplane,

V = speed of the airplane,

For our example the weight of the airplane is 2130 Ib.

and its power is 300 H.P.; then = 7.1; the foreseen speed

is about 158 m.p.h. Furthermore for a we can adopt the

value 8.

Then the preceding formula becomes:

d 3 = 61.5 X 10- 9 WI
2

(2)

Euler's formula, for a =
8, gives

W 1

r = 3.76 X 10- 7 X -77T, (3)

Equations (2) and (3) enable obtaining d and A, when W
and I are known; then since

A = 6.37^

the thickness t of the tube is easily obtained.

The computations of the struts for the airplane in our

example, Table 40, have been made with these criterions.

Before passing to the calculation of the horizontal truss-

ings it is necessary to mention the vertical transversal truss-

ings which serve to unite the front and rear struts (Fig. 182).

The scope of these bracings is that of stiffening the wing
truss and at the same time of establishing a connection

between the diagonals of the principal vertical trussings.

Their calculation is usually made by admitting that they
can absorb from Y^ to % of the load on the struts.

(c) The horizontal trussings have the scope of balancing
the horizontal components of the air reaction. As we have

seen, it is sufficient for the calculation, to assume for these

horizontal components 25 per cent, of the value of the

vertical reactions.

As an effect of the stresses in the vertical trussings,

a certain compression in the spars of the upper wings
and a certain tension in the spars of the lower wings are

developed.
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As an effect of the stresses in the horizontal trussings we
have a certain tension in the front spars and a certain com-

pression in the rear spars.

TT
O.

TABLE 40

Member
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TABLE 41

Spar
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We see then that while there is partial compensation of

stresses in the upper-front and lower-rear spars, in the other

two spars instead the stresses add to each other. The

spar which is in the worst condition is the upper-rear one,

LOWER DRAG TRUSS DIAGRAM
13 24 In

Scale of
Lengths.

400 NX

Scale of Forces

STRESS DIAGRAM

B-F

FIG. 184.

6TRES5 DIAGRAM

FIG. 185.

which is doubly compressed. In order to take the stress

from it, at least partially, it is practical to adopt drag cables

which anchor the wings horizontally. Usually these drag
cables anchor the upper wings only. Sometimes also the

lower ones.
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In Fig. 183 the schemes of the horizontal trussings for

the lower and upper wing are given. They are made of

spars, a certain number of horizontal transversal struts,

and of steel wire cross bracing. As we have already seen,

in Fig. 1$3 the acting forces have been indicated equal to

25 per cent, of the vertical components. In Figs. 184 and

185 the graphic analysis of the horizontal trussings of the

lower and upper wings have been given; as they are en-

tirely analogous to those described for the vertical truss-

ing, we need not discuss them.

(d) Analysis of the Unit Stresses in the Spars. This

analysis is usually made following an indirect method, that

is, under form of verification. We fix certain sections for

the spars and determine the unit load corresponding to the

ultimate load of the airplane.

After various attempts, the most convenient section is

determined.

Let us suppose that in our case the sections be those indi-

cated in Fig. 186.

The areas and the moment of inertia are determined first.

The areas are determined either by the planimeter or by
drawing the section on cross-section paper. The moment
of inertia is determined either by mathematical calculation

or graphically by the methods illustrated in graphic statics.

Fig. 187 gives this graphic construction for the upper rear

spar.

Practically two principal methods of verification are used:

A. The elastic curve method.
B. The Johnson's formula method.

A. This method consists of determining the total unit
stress fT by adding the three following stresses :

1. Stresses of tension or of pure compression fc
=

f
A.

where PT is the sum of the stresses PL and PD originated in

the considered part of the spar by vertical and horizontal

load, and A is the area of the section.

2. Stress due to bending moments fM = ^r where M is the
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bending moment and Z is the section modulus. We shall

remember that this modulus is obtained by dividing the

moment of inertia I by the distance of the farthest fiber

from the neutral axis.

P V A
3 . Bending stress due to the compression stress /A = -

Z
where PT is the compression stress and A is the maximum
deflexion of the span which is obtained from the elastic

curve. In order to know A it is necessary to know the

elastic modulus E of the material because this modulus

enters into the equation which gives the scale of the elastic

curve (see Figs. 171 and 176).

By adding the values fc , fM and /A we obtain /r ,
which is

the total unit stress, in our case corresponding to a load

equal to ten times the normal flying load. If we wish to

determine the factor of safety of the section it is necessary

to know the modulus of rupture of the material; this modu-
lus of rupture divided by Jf o /r gives the factor of safety.

We have given in Chapter XVI the moduli of rupture

to bending for various kinds of wood. For combined stresses

of bending and compression stresses, it is necessary to adopt
an intermediate modulus of rupture. Fig. 188 shows dia-

grams giving the modulus of rupture as function of ratio

~ for the four following kinds of wood; Douglas fir, port-
JT

orford, spruce and poplar.

In Table 42 all the preceding data for the sections of the

spars most stressed has been collected. In this table

PL = stress due to vertical trussings.

PD = stress due to horizontal trussings.

PT = PL + PD = total stress due to both trussings.

For these stresses the sign has been adopted when they
are compression stresses and the + sign when they are ten-

sion stresses.

A = area of the section.

*%&,A
E = elastic modulus of the material.
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/ = moment of inertia of the section.

Z = section modulus.

M = bending moment due to air pressure.

/M ~v unit stress due to this bending moment.
A

A = maximum deflexion of the span.

PT = moment due to compression stress PT .

/A = = unit stress due to the moment
A.

originated by the compression stress.

S = total shearing stress.
o

s =
.
= unit stress to shearing.

fc//T
= ratio between the compression stress and

total stress. By using the diagrams of Fig.

188, this ratio enables us to determine

the modulus of rupture, thence the factor

of safety.

B. The Johnson's formula method is based upon John-

son's formula:

P T M
A + P T l* \

KEI )

where I is the length of the span, K is a numerical coefficient

and the other symbols are those of the preceding method.

The value of coefficient K is dependent on end conditions

and is

= 10 for hinged ends
= 24 for one hinged, one fixed

= 32 for both ends fixed

In Table 43 all the values of the quantities necessary

for calculating the factor of safety by the Johnson's formula

method have been collected.

We see that the factors of safety are about equal to those

found by the preceding method, with the exception of that

corresponding to point B of the upper-rear-spar. This
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Member
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This calculation, which is usually made graphically is

illustrated in Figs. 189 and 190.

The rib can be considered as a small beam with two sup-

ports and 3 spans; the supports being made by the spars.

Diagram (a) of Fig. 189 gives the values of the pressures

TABLE 42 (Continued)

fM =
M/Z,

Ib. per
sq. in.
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DO B A

DC B A

TABLE 43

Member
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is known. Consequently only the procedure for the cal-

culation of these loads will be indicated.

Let us first of all consider the fin-rudder group (Fig. 194).

In normal flight as well as during any maneuver whatever,
the distribution of the pressures on these surfaces is very

TABLE 43 (Continued)
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value equal to 0.5 u in the rear

part. In the rudder instead,

the unit load decreases from u
to zero.

In order to determine the

numerical value of u the aver-

age value um of the unit load of

the surfaces is usually given.
This average value is assumed
so much greater, as the airplane
is faster; practically for speeds
between 100 and 200 m.p.h. we
can assume

um = 0.167

expressing um in pounds per

square foot.

In our case we shall have
about um = 25 Ibs. per sq. ft.

Then the surfaces of the fin

and rudder are divided into

sections (Fig. 194 (a)), and
their areas are determined. In

our case they are as given in the

table of Fig. 1Q4 (&); let us call

a one of these areas and ku
the corresponding unit load;
the load upon it will be evi-

dently aku.

If A is the total area, we have

Sa X k X u =

that is

u = A Xum

Za X k

The value u having been

determined, we have all the
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elementary values aku, which in our case are as given in the

table of Fig. 194 (d). These loads being obtained, we

easily determine:

(a) the center of loads of the fin, that is, what is usually

termed the center of pressure of the fin,

(6) the center of loads or center of pressure of the rudder,

and

(c) the center of loads of the entire system.

It is then possible to determine the reactions on the various

structures and consequently to make the calculation of their

dimensions, following the usual methods.

In Fig. 195 all the operations previously described are

repeated for the stabilizer-elevator group, noting, however,

that for this group we usually assume

um = 0.22 X V

that is, in our case um = 35 Ibs. per sq. ft.



CHAPTER XIX

STATIC ANALYSIS OF FUSELAGE, LANDING GEAR
AND PROPELLER

A. Analysis of Fuselage. Let us consider the following

particular cases:

(a) Stresses in normal flight.

(6) Stresses while maneuvering the elevator.

(c) Stresses while maneuvering the rudder.

(d) Maximum stresses in flight.

(e) Stresses while landing.

(a) In normal flight the fuselage should be considered

as a beam supported at the points where the wings are

attached to it and loaded at the various joints of the

trussing which make the frame of the fuselage. In these

conditions it is easy to determine the shearing stresses and

the bending moments when the weight of the various parts

composing the fuselage or contained in it are known.

Let us consider the case of a fuselage made of veneer. As
we have seen in the first part of this book, such a fuselage

has a frame of horizontal longerons connected by wooden

bracings; this frame is covered with veneer, glued and nailed

to the longerons and bracings. Let us suppose the frame

to be the one shown in Fig. 196a.

First the reactions of the various weights on the joints

of the structure, and the reactions on the supports are

calculated (Fig. 1966). It is then easy to draw the dia-

gram of the shearing stresses (Fig. 196c), and of the bending
moments (Fig. 196d), corresponding to the case of normal

flight.

(6) When the pilot maneuvers the elevator, the fuselage
is subjected to an angular acceleration, which is easily

calculated if the moment of inertia of the fuselage is known.
324
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In Fig. 197 the graphic determination of this moment of

inertia has been made; its result is I = 97,000 Ib. X inch 2
.

We shall suppose that a force equal to 1000 Ib. acts suddenly

upon the elevator. Then remembering the equation of

mechanics

C = I X

where

C = acting couple

IP = polar moment of inertia

-IT = angular acceleration
dt

and as in our case

C = 1000 X 177 = 177,000 Ib. X inch

7 = 97,000 Ib. mass X inch 2

we shall have

do, _. 177,000 .. ,

dt~ "97^00"

This angular acceleration originates a linear acceleration

in each mass proportional to its distance from the center

of gravity and in a direction tending to oppose the rotation

originated by the couple C. Thus, each mass will be sub-

jected to a force, as illustrated for our example, in Fig.

198a. It is then easy to obtain the diagrams of the shear-

ing stresses (Fig. 1986), and of the bending moments (Fig.

198c), originated by the forces of inertia which appear in

the various masses of the fuselage, when a force of 1000

Ib. is suddenly applied upon the elevator.

Let us note that the stresses thus calculated are greater
than those had in practice; in fact for the calculation of the

angular acceleration, the total moment of inertia of the

airplane and not only that of the fuselage should have
been introduced: therefore the angular acceleration found

is greater than the effective one. However this approxi-
mation is admissible, since its results give a greater degree
of safety.
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(c) For maneuvering the rudder the same applies as

for the elevator. The same diagrams of Fig. 198 may also

be used for this case.

SHEAR DIAGRAM FORTEN TIMES THE FUSELAGE WEIGHTS

8 9 10 II 12 13

2 3 4a 4b 5

O)
SHEAR DIAGRAM FOR 752 LBSON ELEVATOR

6 7 8> 9 10 II 12 13

SHEAR DIAGRAM FOR 3OOLBS.ON RUDDER
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rudder. This is equivalent to make the following

hypothesis :

1. to multiply the loads of the fuselage by 10,

2. to apply 762 Ib. upon -the elevator,

3. to apply 309 Ib. upon the rudder.

30 60 in
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30000
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60000 "!libs.

2 3 4 4*> 5 6 7 ^ 9 10 II 12
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It is then easy to draw the diagrams of the shearing

stresses in this case (Fig. 199, a, b, c), and consequently,

through their sum, the diagram of the total shearing

stresses in flight (Fig. 199d).

In order to calculate the maximum bending moments,
it is necessary to consider separately those produced by
vertical forces (loads on the fuselage and on the elevator),

and those produced by horizontal forces (loads on the

rudder). In Fig. 200 a, b, c, the bending moments are

shown due respectively to 10 times the loads on the fuse-

lage, to the load of 762 Ib. on the elevator, and to the load

of 306 Ib. on the rudder.

Fig. 201a shows a diagram obtained by the algebraic sum
of the first two diagrams, Fig. 2016 shows the total dia-

gram whose ordinates m" are equal to the hypotenuses of

the right triangles having the sides corresponding to the

ordinates m and n of diagrams 200c and 20 la.

Having obtained in this manner, the diagrams of the

maximum shearing stresses and maximum bending mo-
ments corresponding to the various sections, it is possible

to proceed in the checking of the resistance of those sections.

In Fig. 202 the checking for section 4-5 has been effectu-

ated. For simplicity it is customary to assume that the

longerons resist to the bending and the veneer sides to

the shearing stresses. The stress due to shearing is given

immediately, dividing the maximum shearing stress by the

sections of the veneer. As for the stresses in the longerons,
it is necessary to determine their ellipse of inertia.

Let 1, 2, 3 and 4 be the four longerons constituting section

4-5. The maximum moment is equal to 216,600 Ib. X
inch, and its plane of stress makes an angle x with the verti-

cal plain such that

tana = Horizontal moment
= 16,600 = ft 076

Vertical moment
=

215,300
"

Then a certain section is fixed for the longerons and with

the usual methods of static graphics the moments of inertia

of the four assembled longerons with respect to horizontal

axis and to a vertical axis passing through the center of
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gravity of the system are determined (Fig. 202a). Then

the ellipse of inertia may be drawn (Fig. 202&). The vector

radius OA r
of such an ellipse which makes the angle a with

the vertical gives the moments of inertia to be used in the

calculations. In order to have the section modulus, it is

necessary to draw B'O' 'the conjugate diameter to O'A '

. For

the center of gravity of the four longerons draw OB paral-

lel to diameter O'B'; from the four points Mi, M 2 ,
M 3 ,

and

M 4 draw the parallels to OA, to meet the straight line OB
in Ni, N<i, Nz and N*. By dividing the moments of inertia

measured by O'A' by the largest of the 4 segments MiNi,
M2A^2 , MJVs, M 4N 4 the section modulus Z is obtained.

We can then compute the unit stresses and therefore the

coefficient of safety.

(e) In landing, the fuselage is supported by the landing

gear and by the tail skid. The system of acting forces,

with coefficient 1, is then that shown in Fig. 203.

Fig. 204 shows the diagrams of the shearing stresses and

bending moments corresponding to that case. Since, as

it will be seen, the coefficient of resistance of the landing

gear is usually taken between 5 and 6, it will suffice to

multiply the preceding stresses by 6 and verify that the

sections of the fuselage are sufficient. In our case these

stresses result lower than the maximum considered in flight.

B. Analysis of Landing Gear. Let us consider the

following particular cases:

1. Normal landing with airplane in line of flight.

2. Landing with tail skid on the ground.
3. Landing on only one wheel; that is, with the machine

laterally inclined by the maximum angle which can be

allowed by the wings.
4. Landing with lateral wind.

Figs. 205, 206, 207 and 208 illustrate respectively the

construction for those four cases, giving for each the ten-

sion on compression stresses, the diagrams of the bending
moments, and the member subjected to bending (axle and

spindle). In the fourth case it has been assumed that the

maximum horizontal stress is not greater than 400 Ib.
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because with a great transversal load the wheel would

break. In Fig. 209 the sections of the various members

have been given, the results of the analysis having been

CASE. 4-.

FRONT

I . . 1 1 1 1 1 1 1 i i I

N SIDE ELEVATION
DIAGRAM OF LANDING GEAR

o ciO 4O in

Scale o-f- Lenq+hs
400 1 bs.

FORCE
POLYGONS

200 400 Ibs
Scale o-f Forces

FIG. 208.

grouped in table 44. The table gives the following elements
for each member :

P = compression or tension stress

Mf
= Bending moment

I = Moment of inertia

Z = Section Modulus
A = Area of the section

Fc
= unit load due to compression or tension

Fm = Unit load due to bending
Ft

= Total unit load

Modulus of rupture
Coefficient of safety
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As for the criterions to be followed in the selection and

computation of the shock absorbers, reference is to be

made to what has been said in Chapter XVI.

'Hinge at
this Point

O - O 4OIJ1

Scale of Lencj+hs.

51 DE ELEVATION. HALF FRONT ELEVATION .

SECTION! A-A.
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Section 1 r x becnonc.
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should be noted that in that type of propeller the pitch is

not constant for the various sections, but increases from

the center toward the periphery until the maximum value

of 9 feet is reached which is the one assumed to characterize

the propeller.

The forces which stress the propeller in its rotation can

be grouped into two categories:

1. Centrifugal forces which stress the various elements

constituting the propeller mass.

2. Air reactions which stress the various elements consti-

tuting the blade surface.

If any section A of the propeller is considered, the forces

which stress that section are then the resultants of the

centrifugal forces and the resultants of the air reactions

pertaining to that portion of the propeller included between

section A and the periphery. In general, these resultants

do not pass through the center of gravity of section A,
so their action on that section produces in the most general

case:

1. Tension stresses.

2. Bending stresses.

3. Torsion stresses.

It is immediately seen that by giving a special curvature

to the neutral axis or elastic axis of the propeller blade it is

possible to equilibrate the bending moment in each section

produced by the centrifugal force, with that produced by
the air reaction.

The stresses will then be those of tension and torsion,

resulting thereby in a greater lightness for the propeller.

We shall then proceed to find the total unit stresses, and

the curvature to be given to the neutral axis of the propeller

blade. In order to proceed in the computations, it is

necessary to fix the following elements :

N = number of revolutions of the propeller,

o> = corresponding angular velocity,

pp
= power absorbed by the propeller when turning at

N revolutions,
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A = density of the material out of which the propeller is

to be made.

In our case, N = 1800, and therefore

co = = 188 I/sec.
60

FurthermorePp
= 300 H.P.

As for the material, the propellers can be made of walnut,

mahogany, cherry, etc. Suppose that we choose walnut,
for which A = 0.0252 Ib. per cu. in. Let us now
find the expression for the centrifugal force d$ which

stresses an element of mass dM
,
and for the reaction of

the air dR which stresses an element 1-dSoi the blade surface.

The elementary centrifugal force d$ has, as is known, the

expression

d$ = dM X co
2 X r

since we can place

dM = - X A X dr

where

g is the acceleration due to gravity = 386 in. /sec.
2
,

A is any section whatever of the propeller, and
dr is an infinitesimal increment of the radius.

We shall then have

d$ = - X co
2 X A X r X dr

9

= 2.3 X A X r X dr

from which

~ = 2.3 X A X r (1)dr

Then by determining the areas of the various sections A,
we shall be able to draw the diagram A = f (r) of Fig. 214,
which by means of formula (1) permits drawing the other
one

whose integration gives the total centrifugal forces $
which stress the various sections (Fig. 215).
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The elementary air reaction dR has the following expres-

sion

dR = K X dS X U 2

where K is a coefficient which depends upon the profile of

the blade element and upon the angle of incidence, dS is a

20 24 2& 32

Radii -in Inches

FIG. 214.

surface element of the blade, and U is the relative velocity

of such a blade element with respect to the air.

Calling I the variable width of the propeller blade, we may
make

dS = I X dr

16000

24 28

Radii in Inches

FIG. 215.

on the other hand, velocity U is the resultant of the velocity

of rotation r and of velocity of translation V, of the air-

plane. The direction of these velocities being at right

angles to each other we shall have

U* = co
2 X r 2 + 7 2
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therefore

dR = K X (co
2 X r 2 + 7 2

) X I X
from which

= X X X r 2 + X I

It is immediately seen that it would be very difficult to

take into consideration the variation of coefficient K
from one section to the other, and therefore with sufficient

FIG. 216.

practical approximation K may be kept constant for the

various sections and equal to an average value which will

be determined.

We note that dR being inclined backward by about 4

with respect to the normal to the blade cord, changes
direction from section to section; it will consequently be

convenient to consider the two components of dR, com-

ponent dRt perpendicular to the plane of propeller rotation

and component dRr contained in that plane of rotation

(Fig. 216).

The expression -j- can also be put in the following form :

K X co
2 X + ~) X I
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In our case co = 188 and V = 156 m.p.h. = 2800 in.

per sec.

On an axis AX lay off the various radii (Fig. 217),

V '2800
make AB = - = -

r = 1-49 perpendicular to AX, and
CO lOO

from B draw segment BC. We shall evidently have

= AB 2 + AC 2

that is,

72
BC 2 = + r ?

CO"

Analogously by drawing BC'
,
BC"

,
etc. the squares of

V 2

these segments will give the terms ^ + r 2
. In this manner

-IT- may be calculated, except for the constant K.

Make -,.- equal to CD, so that CD makes an angle of 4
at

with the prolongation of BC. Projecting D in E and F,

we shall have

DE = -j^ and DF = -

dr dr

We may then draw the two diagrams

CLfir // \ 1 (-"Kt ,, ,.

- = /(r) and -j- = /(r)
r/T" ^77*

whose integration gives the value of components Er and E,

corresponding to the various sections; that is, gives the

shearing stresses. For clarity, these diagrams have been

plotted in two separate figures for components R r and R t ,

the former having been plotted in Fig. 217 and the latter

in Fig. 218.

The shearing stresses #r and Rt being known, by means
of a new integration, the diagrams of the bending moments
Mr and Mt can easily be obtained. It should be noted

that the maximum value of Mr equals one-half of the motive

couple. The power being 300 H.P. and the angular velocity
co = 188, the motive couple will equal

OAA vx KQH
- ^ - = 800 Ib. X ft. = 9600 Ib. X inch
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Mr
= |X96001b. X inch = 4800 Ib. X inch.

The scale of moments is fixed in this manner and conse-

quently that of the shearing stresses
;
and thus the value of

the coefficient K is also determined. Then, for each section,

the resultant stress due to the centrifugal force, the shearing
stresses Rr and Rt ,

and the moments Mr and Mt due to the

air reaction, are known.

If the moment produced in any section whatever by
the centrifugal force is somehow made to be in equilib-

rium with the moments Mr and Mt ,
the deflection stresses

will be avoided.

V- VeJocify erf Aeroplane

FIG. 219.

Let us first of all consider the moments Mt which are the

greatest and consequently the most important, especially
because they stress the blade in a direction in which the
moment of inertia is smaller than that corresponding to

the direction in which the blade is stressed by the bending
moments Mr .

Let us call
-^

the inclination of any point whatever of

the neutral axis curve of the propeller. We shall then
consider any section A whatever of the propeller blade,
and the elementary forces d$ and dR applied to it. The
elementary force d$ follows a radial direction, while the

elementary force dR t follows a direction perpendicular to
the plane of rotation of the propeller (Fig. 219); while
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d& is applied to the center of gravity of the element A X
dr, the air reaction dRt is not applied to the center of gravity,
but falls at about 33 per cent, of the chord. However, from
known principles of mechanics, this force can be replaced

by an elementary force dR t applied to the center of gravity,
and by an elementary torsion couple dTt . The effect of this

couple will again be referred to, and for the moment we shall

suppose dRt applied to the center of gravity. Let us

assume then the condition

d$ dy

20 24 28

Radii in Inches

FlG. 220.

36 40 44

that is, that the resultant of d$ and dRt be tangent to the

neutral curve of the propeller blade. Under these condi-

tions, supposing that this be true for every element

A X dr of the propeller, all the various sections will be

stressed only to tension.

Since we may write

dR t

~
dR t/dr

it is easy to draw the diagram

*=> w
and, by graphically integrating this diagram, obtain

y=f(r]

which gives the shape that the center of gravity axis of the

propeller blade must have in elevation (Fig. 220).
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With an analogous process, the shape in plan is found

by considering the forces d<$> and dRr ',

in Fig. 221. the rela-

dij

tive diagrams have been drawn for -v- =
f(r) and y =

f(r).

Thus the propeller may be designed. In Fig. 210 the neu-

tral axis has been drawn following this criterion.

20 24 20

Radii in Inches

FIG. 221.

Let us now determine the unit stresses corresponding to

the case of normal flight.

These stresses are of two types:

1. tension stresses,

2. torsion stresses.

16 20 24 28 32

Radii, in Inches

36 40

FIG. 222.

Tension stresses are easily calculated, in fact, for every
section A they are equal to

In Fig. 222 the diagram of fl obtained by the preceding
equation has been drawn.
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As to the torsion stresses, they depend only upon the

air reaction. Let us consider a section A and the air reac-

tion dR which acts upon the blade element I
- dr correspond-

ing to this section. Evidently

dR = (dR t

2 + dRr*)*

The point of application of dR falls, as we have seen, at 0.33

of the width of the blade Z; therefore dR will in general

produce a torsion about the center of gravity; let us call

Inches

FIG. 223.

h the lever arm of the axis of dR with respect to the center

of gravity; the elementary torslonal moment will be

dT = h X dR = h X (dR t

2 + dR*)*
and consequently

The values of h are marked on the sections (Figs. 211, 212

and 213) ;
the values --T- and ^ are given by the diagrams

of Figs. 217, 218; thus in Fig. 223 the diagram may be

drawn of

dT ff -.

dF
=

f(r}

and by integrating, that of

T =
f(r)
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FIG. 225.
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It is now necessary to determine the polar moments Ip
of the various sections; to this effect it suffices to determine

the ellipse of inertia of the various sections by the usual

methods of graphic analysis; then calling Ix and Iy the

moments of inertia with respect to the principal axis of

inertia, we will have

For each section (Figs. 211, 212 and 213), we have shown
the values of the area, of the polar moment Ip and of Zp

=

-- In Fig. 224 the diagram Ip for the various sections and
oc

the diagram -7
= Zp have been drawn.

oc

Dividing, for each section, the corresponding values of

the total moment of torsion T by the values of the section

modulus for torsion Z, we shall have the values /2 of the

unit stresses to torsion (Fig. 225). It is immediately evi-

dent that this method is exact only when the neutral

axis of the propeller is rectilinear and in the direction

of the radius, which, however, does not correspond to

practice. In effect though, as the torsion stresses represent

a small fraction of the total stresses, the approximation
which can be reached is practically sufficient.

When the unit stresses /i and /2 to tension and torsion

are known, the total stress ft is determined by the formula

ft
= 0.35 X /i + 0.65 X (/i

2 + 4 X 2 X /2
2
)^

where

modulus of rupture in tension -
a -

-.

= /^**' /
1 .3 modulus of rupture in shearing

Then the diagram which gives ft for the various sections

may be drawn (Fig. 226). It is seen that the value of the

maximum stress is equal to 1280 pounds per square inch;

that is, to about J^ the value of the modulus of rupture.
As a safety factor between 4 and 5 is practically suffi-

cient for propellers, it may be concluded that the aforesaid

sections are sufficient.



CHAPTER XX

DETERMINATION OF THE FLYING
CHARACTERISTICS

Once the airplane is calculated and designed, it becomes

possible to determine its flying characteristics. The best

method for this determination would undoubtedly be that

of building a scale model of the designed airplane and of

testing it in an aerodynamic laboratory. This, however,
is often impossible, and it is therefore necessary to resort

to numeric computation.
Let us remember that the aerodynamical equations bind-

ing the variable parameters of an airplane are

W = 10- 4 \AV 2 and

550P! - 147 X 10~ 9
(5A + <r)7

3

where

W = weight in pounds,
A = surface in square feet,

V = speed in miles per hour,

PI = theoretical power in horsepower necessary for flight,

o- = coefficient of total head resistance, and
X and 5 = coefficient of sustentation and of resistance of

the wing surface.

Let us assume, as in Chapter VIII, that

A = 10~4 XA
A = 10- 4

(5A + (7)

The preceding equations can then be written

W
~V~2

=A

/ . n^ = i47A

Since A and a are constant and X and 5 are functions of
the angle of incidence i, A and A will also be functions of i.
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Then, X, 5 and <r being known, it is possible to obtain a

pair of values of A and A corresponding to each value of

i, and the logarithmic diagram of A as function of A can

then be drawn.

Let us suppose that X and 8 are given by the diagram of

Fig. 155 (Chapter XVII). The value of a is calculated by

remembering that

a = 2K X A

that is, it is equal to the sum of the head resistances of the

various parts of which the airplane is composed. This,

however, does not always hold true, because of the fact

that the head resistance offered by two or more bodies close

to each other and moving in the air is not always equal to the

sum of the head resistances the bodies encounter when mov-

ing each one separately, but it can be either greater or

smaller. Thus, an exact value of the coefficient <? can be

obtained only by testing a model of the airplane in a wind
tunnel. However, if such experimental determination can-

not be available, the value a can be determined approxi-

mately by calculation as has been mentioned above. Table

45 shows the values of K, A and K X A for the various parts

constituting the airplane in our example. This table gives
a = 132.5. It is then easy to compile Table 46 which gives
the couples of values corresponding to A and A and con-

sequently enables us to draw the logarithmic diagram of A
as function of A (Fig. 227).

TABLE 45

Parts
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The scales of W, P l and V of

this diagram are easily found with

processes analogous to those used in

Chapters VIII and IX.

The diagram then enables us to

immediately find the pair of values

V and PI corresponding to sea

level; this makes possible the im-

mediate determination of the maxi-

mum speed which can be reached.

Thus it is necessary to know the

power of the engine (which in our

case is 300 H.P.) and the propeller

efficiency; supposing, as it should

always be, that the number of re-

volutions of the propeller may be

selected, we can reach an efficiency

of p
= 0.815; then the maximum

useful power is 0.815 X 300 = 244

H.P.; making PI = 244 we have
AA" the segment which represents

^max.; laying this segment off on

the scale of speeds we have Fmax<

= 153 m.p.h.
It is also seen that the minimum

speed at which the airplane can

sustain itself is given by the seg-

ment B'B" which, read on the scale

of speeds, gives Fmin
= 72 m.p.h.;

that is, it is lower than the value

75 m.p.h. imposed as a condition.

Then our airplane can fly at speeds
between 72 and 153 m.p.h. If we
wish to study its climbing speed it is

necessary to draw the diagram which

gives pP2 as function of the various

speeds. Thus it is necessary to know
the characteristics of the engine and

propeller.
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Let us suppose that the characteristics of the engine be

the same as those given in Fig. 228. We see that the maxi-

mum power of 300 H.P. is developed at 1800 revolutions per

310
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290

2&0

270

260

BO

240

230

220

210

200

190

I&O
13 14 15 16

R.p.m( Hundreds)

FIG. 228.

15

minute; on the other hand, if we wish to reach the maxi-
mum efficiency of P =

0.815, it is necessary to satisfy a
certain ratio between the translatory velocity of the air-
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plane and the peripheric velocity of the propeller. In Fig.

71 (Chapter VI), which is repeated in Fig. 229 are shown
the values of the maximum obtainable efficiencies with
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ever, m.p.h. for V, r.p.m. for n, feet for p and D, and

H.P. for P.

Since we want p = 0.815, and consequently .we have

seen that 7max .

= 153 m.p.h., the diagrams of Fig. 229

allow us to obtain the number of revolutions and the diam-

eter of the propeller. In fact for p
= 0.815 we find

"

j.
- 11-4 X 10-

;

P
. . -I 10

D
'

- 2 ' 2 X 1Q
- 12

Knowing that V = 153 and P = 300 H.P. we have as

unknowns n, D and p, whose values are defined by the

preceding equations. Solving these equations we obtain:

n = 1690 revolutions per minute,
D = 7.92 feet, and

p = 9.35 feet.

Since the number of revolutions found is very near to the

average R.p.m. of the engine, it will be convenient in our

case to connect the propeller directly with the crank-shaft.

Having obtained the propeller, it is necessary to know the

characteristic curve of the propeller family to which it be-

longs. It should be remembered that all propellers having
the same blade profile and the same ratio between pitch
and diameter, have the same characteristics (see Chapter
IX).

Let the characteristics of a family to which our propeller

belongs be those given in the logarithmic diagram of Fig. 230.

Then with the same criterions which have been explained
in Chapters, IX, XIII, and XIV, it is possible to draw
the diagram of pP2 as a function of V for any altitude; for

instance, the altitudes 0, 16,000, 24,000, and 28,000 ft. For
this purpose the diagrams have been drawn in Fig. 230,
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p
which give the values ^ corresponding to these altitudes

IV J-J

and in Fig. 231 the diagrams of P 2 of the same heights.

4X10"3 6x10 3 8xlO~3 lOxlO"
3

12x10" I4*IO~
3

ifr
60 70 80 90 100 150 200

I i i i i I i i 1 1 1 1 i 1 1 1 1 1 1 1 1 I J i i I I I i i I

V.
Tn:p.-h.

FIG. 230.

By using these diagrams those of Fig. 232 have been

drawn from which it is seen that the maximum velocity at

sea level is only 150 m.p.h. with a corresponding useful

power of 225 H.P. This depends upon the fact that a pro-
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peller has been directly connected which should have been

used with a reduction gear having a ratio of
TOQQ*

We will

immediately see that if we wish to adopt a direct connection
it is more convenient to choose a propeller which, although
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belonging to the same family, is of smaller dimensions so as

to permit the engine to reach the most advantageous num-

ber of revolutions and therefore to develop all the power
of which it is capable. It is interesting, however, to first

study the behavior of the propeller having a diameter of

7.92 ft. in order to compare it to that of a smaller diameter.

The diagrams of Fig. 232 show that the maximum hori-

zontal velocities at the various altitudes with the propeller

of 7.92 ft. of diameter are

at ft., 150 m.p.h.

at 16,000 ft., 148 m.p.h.
at 24,000 ft., 144 m.p.h.

at 28,000 ft., 138 m.p.h.

These diagrams allow us to obtain the differences pP2

PI and therefore to compute the values of the maximum
climbing velocities v at the various heights. These veloc-

ities are plotted in Fig. 233; on the ground the ascending

velocity is equal to 29.5 ft. per second. At 28,000 ft. it

is equal to 1.7 per second; that is, equal to a little more
than 100 ft. per minute; the height of 28,000 ft. must then
be considered as the ceiling of our airplane if equipped
with the above propeller.

From the diagram of v = f(H) it is easy to obtain that of

~ = f(H) (Fig. 234a), and therefore by its integration, we

obtain that of t = /(#), which gives the time of climbing
(Fig. 2346). It can be seen that with this particular pro-
peller, the airplane can reach a height of 28,000 ft. in 3000

seconds; that is, in 50 minutes.
Let us now suppose that a propeller is adopted of such

diameter as to permit the engine to reach its maximum
number of revolutions. By using the diagram of Figs. 227
and 230 we find with easy trials and by successive approxi-
mation that the most suitable propeller will have a diam-

eter of 7.65 ft. and therefore as =
1.18, a pitch of about



DETERMINATION OF THE FLYING CHARACTERISTICS 369

30

25

20

15

10

*

\

10000 20000

H=F+.

30000

FIG. 233.



370 AIRPLANE DESIGN AND CONSTRUCTION

0.6

3200

2400

1600

&00

30000

10000 30000

H=Ft

(*)

FIG. 234.

30000



DETERMINATION OF THE FLYING CHARACTERISTICS 371



372 AIRPLANE DESIGN AND CONSTRUCTION

35

30

25

20

15

10

10000 20000
H=Fh

FIG. 236.

30000



DETERMINATION OF THE FLYING CHARACTERISTICS 373

.-H pe A

0.6

0.5

0.4

O
(D

(f)

? 0.3

0.2

rn =

10000 ZOOOO 30000

3ZOO

24-00

1600

500

10000 ZOOOO

H=Ft.

. FIG. 237.

30000



374 AIRPLANE DESIGN AND CONSTRUCTION

9 ft. This propeller is the one for which the static analysis

was given in the preceding chapter. For such a propeller

the logarithmic diagrams of PP 2 ,
the diagram v = f(H) and

those of - = f(H) and t = f(H) have been plotted in figures

235, 236 and 237a& respectively.

The diagrams of Fig. 235 show that the new maximum

velocities are

at ft., 156 m.p.h.

at 16,000 ft., 155 m.p.h.

at 24,000 ft., 150 m.p.h.

at 28,000 ft., 144 m.p.h.

The diagram of Fig. 236 shows that at an altitude of

28,000 ft., v = 3.7 ft. per second = 222 ft. per minute;

that is, the ceiling has become greater than 28,000 ft.

The diagram of Fig. 237 finally shows how the height of

28,000 ft. is reached in 2400 seconds; that is, in only 40

minutes.

The second propeller, therefore, is decidedly better than

the first one.

The question now arises: What is the maximum load

that can be lifted with our airplane? It is therefore neces-

sary to suppose the efficiency of the propeller to be known.

Supposing p
= 0.815, then the maximum useful available

power will be 244 H.P.

Let us again examine the diagram A =
/(1.47 A) (Fig.

238) for our airplane at the point corresponding to 244

H.P. on the scale of powers, draw a perpendicular to meet

tangent t in B drawn from the diagram parallel to the scale

of velocities. From B draw the parallel BC to the scale of

powers. Point C gives the maximum -theoretical load

which the airplane could lift, and which in our case would
be about 7300 Ib. The corresponding velocity is measured

by segment BD which, read on the scales of velocity, gives
7 = 132 m.p.h.

Practically, however, the airplane cannot lift itself in

this condition as it is necessary to have a certain excess
of power in order to leave the ground.
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Supposing then we fix the condition that the airplane

should be able to sustain itself at a height of 10,000 ft. As

H = 60,720 log
l

for H = 10,000 we will have p = 0.685, therefore in this

case the useful power becomes 0.815X0.685X300 = 167.5

H.P. Let us then draw a perpendicular from A' corre-

sponding to 167.5 H.P. to meet tangent t in B f

. From B f

draw the parallel to the scale of power. From origin

of the diagram draw a segment 00' parallel to the scale of

iu and which measures ju
= 0.685; from 0' raise the per-

pendicular until it meets the horizontal line in C' drawn

from BB'; from C' draw the parallel to 00' up to C"';

this point defines the value of the maximum load which

our airplane could lift up to 10,000 ft. and which in our

case is about 4100 Ib. The corresponding velocity is

measured by B'D and is equal to 116 m.p.h.

Let us now study what the effect would be of a diminu-

tion of the lifting surface. Until now we had supposed
that A =265 sq. ft.; that is, we had a load of 8 Ib. per

sq. ft. Now supposing this load is increased up to 10,

12, 14, and 16 Ib. per sq. ft. respectively; that is, the

lifting surface is reduced from 265 sq. ft. to 214, 178, 153

and 134 sq. ft. successively. For each of such hypotheses
it will be necessary to calculate the new values of A and A

;

the results of these calculations are grouped in Table 47.

By means of this table the diagrams of Fig. 239 have
been drawn; let us then suppose that in each case a pro-

peller having the maximum efficiency of 0.815 has been

adopted. The useful power will be 244 H.P.
; drawing from

A, the point which corresponds to this power, the parallel

p to the scale of velocity, on the intersection with this line

and the diagram we shall have the point which defines the

maximum velocities; drawing the tangent t parallel to the

scale of V from each of the various curves the points
of tangency which determine the minimum velocities will

be obtained.
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TABLE 47
A = io-"XA a = 132.5

A = 10~"(5A + a)

A,
sq. ft.



CHAPTER XXI

SAND TESTS WEIGHING FLIGHT TESTS

I

The ultimate check on static computations giving the

resistance to the various parts of the airplane, is made either

by tests to destruction of the various elements of the struc-

ture or by static tests upon the machine as, a whole.

In general it is customary to make separate tests (A)
on the wing truss, (B) on the fuselage (C) on the landing

gear and (D) on the control system.
A. Sand Tests on the Wing Truss. Two sets of tests

are usually made on a wing truss to determine its strength ;

one assuming the machine loaded as in normal flight, the

other loaded as in inverted flight.

In the first assumption, the inverted machine is loaded

with sand bags, so that the weight of the sand exerts the

same action on the wings as the air reaction does in flight;

in the second assumption the machine is loaded with sand

bags in the normal flying position. In both cases the

machine is placed so as to have an inclination of 25 per

cent. (Fig. 240), so that weight W, with its component L
stresses the vertical trusses, and with its component D
stresses the horizontal trusses.

During the test, the fuselage is supported by special

trestles, constructed so as not to interfere with the deforma-

tion of the wing truss. The distribution of the load upon
the wings must be made in such a manner that the reactions

on the spars will be in the same ratio as those assumed in

the computation. For the example of the preceding chap-
ters it is well to remember that these reactions were due

to the following loading:

Upper front spar 1.98 Ib. per linear inch.

Upper rear spar 1.82 Ib. per linear inch.

Lower front spar 1.75 Ib. per linear inch.

Lower rear spar 1.62 Ib. per linear inch.

379
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The sand is usually contained in bags of various dimen-

sions, not exceeding a weight of 25 Ib. in order to facilitate

UPPER RIB

A

15 35 40 35 35 30 25 20 20 15 10 10 10 5 5 5

LOADS IN POUNDS

LOWER RIB.

A

15 35 35 30 30 25 ZO 20 20 10 10 10 10 5 5 5

LOADS IN POUNDS.

FIG. 241.

handling. These sand bags must be so placed that beside

satisfying the preceding conditions, they give a loading
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diagram for the upper and lower rib analogous to those

shown in Fig. 241 a, b.

In these figures, below the theoretical diagrams, the

practical loading, using sand bags of 5, 10 and 25 Ib. has

been sketched. In the test corresponding to normal flight,

the machine being inverted, it is necessary to consider the

weight of the wing truss, which gravitates upon the verti-

cal trusses and therefore must be added to the weight of

the sand, while in actual flight it has an opposite direction

to the air reaction.

These weights must be taken into consideration in deter-

mining the sand load corresponding to a coefficient of 1 .

Before starting a static test it is customary to prepare a

diagram of each wing with a table showing the loads corre-

sponding to the various coefficients. For the airplane of

our example, these diagrams are shown in Figs. 242 and

243, and tables 49 and 50.

UPPER

WING
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LOWER

WING.

Factor
safety

13.4- I 24O 24-.Q i eo.9 I 2Q.9 . Z4.O

FIG. 243.

TABLE 50

Table of loads for sand test

3
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2. When this entire load has been placed on the wings,

take a reading of all the rulers.

3. Unload the wing truss gradually and completely.

4. Take a new reading with the machine unloaded.

5. Load the machine again so as to reach a total load

equal to four times that corresponding to a coefficient of 1

minus the weight of the wing truss.

6. Take another reading.

7. Unload the machine completely.

8. Take another reading with the machine unloaded.

And so on for coefficients of 5, 6, 7, etc.

As the maximum coefficient for which the machine has

been computed, and that corresponding to which the ma-
chine will brake, is approached, it is not safe to take

further readings as the falling of the load which follows

the braking may endanger the observer. The various

readings of the deformations with the load and those after

unloading, are usually put in tabular forms and serve as a

basis for plotting the elastic curves. Furthermore the

deformations with the load, allow the computation of

deformations sustained both by struts and diagonals.

Consequently all the elements are had by means of which
the unit stresses in the various parts of the wing truss under
different loadings can be computed.

B. Sand Test of the Fuselage. In computing the fusel-

age, it was seen that the principal stresses are those pro-
duced in flight. Therefore the fuselage sand test is usually
made by suspending it by the four fittings of the main

diagonals of the wings, and subsequently loading it with
sand bags and lead weights so as to produce loads equal to 3,

4, 5, etc., times the weight of the various masses contained
in the fuselage. For the determination of the coefficient of

safety the sum of the weights of these masses is taken as a
basis. At the same time a load equal to the breaking load
of the elevator itself is placed corresponding to the point
at which the elevator is fixed; to equilibrate the moment
due to this load the usual procedure is to anchor the forward
portion of the fuselage. Fig. 244 clearly shows how the
test is prepared.
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C. Sand Test of the Landing Gear. This is done with

the landing gear in a position corresponding to the line of

flight and by loading it with lead weights.

The load assumed as a basis for the determination of the

coefficient is taken equal to the total weight of the airplane

with full load. If, corresponding to each value of load W,
the corresponding vertical deformation / is determined, it is

possible to plot the diagram of W as a function of /, whose

area fWdf gives the total work the shock absorbing system
is capable of absorbing.

D. Sand Test of Control Surfaces. This test is made
with the control surfaces mounted on the fuselage, and

loaded with the criterion explained in Chapter XVIII.

II

Weighing the Airplane. The weighing of the airplane is

necessary not only to determine whether the effective

weights correspond to the assumed ones, but also to deter-

mine the position of the center of gravity both with full

load and with the various hypothesis, of loading which may
happen in flight.

The center of gravity is contained in the plane of sym-
metry of the airplane. To determine this it suffices to

determine two vertical lines which contain it, and for this

it is only necessary to weigh the aeroplane twice, the first

time with the tail on the ground (Fig. 245), and the second
time with the nose of the machine on the ground (Fig.

246). Three scales are necessary for each weighing, two
under the wheels, and one under the tail skid for the case
of Fig. 245, and under the propeller hub for the case of

Fig. 246.

Using W and W"
to denote the weights read on the

scales under the wheels and W" for that read on the scale

supporting the tail skid, the total weight will be

W = W + W" + W"
The vertical axis v' passing through the center of gravity
divides the distance I between the axis of the wheels and
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the point of support of the tail skid into two parts Xi and

#2 so that

W + W"

for which

W"
i i/r////
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and since

Xl + X2 = I and W + W" + W" = W
we shall have

~\K7"'

x 1
= I X W

Let us proceed analogously for the case of Fig. 246. In

this manner two lines v' and v" are obtained whose inter-

section defines the center of gravity.

To eliminate eventual errors and to obtain a check on the

work it is convenient to determine the third line v'", by

balancing the machine on the wheels; v"' will then be the

vertical which passes through the axis of the wheels (Fig.

247). The three lines v', v" and v'" must meet in a point

(Fig. 248).

Ill

The flight tests include two categories of tests, that is;

A. Stability and maneuverability tests.

B. Efficiency test.

A. The purpose of . the stability tests is to verify the

balance of aeroplane when (a) flying with engine going,

and when volplaning, (6) in normal flight and during
maneuvers.

Chapter XI has stated the necessary requisites for a well-

balanced airplane, therefore a repetition need not be given.
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The same may be said of maneuverability tests, whose

scope is to verify the good and rapid maneuverability of the

airplane without an excessive effort by the pilot.

B. The scope of the efficiency tests is to determine the

flying characteristics of the airplane, that is, the ascensional

and horizontal velocities corresponding to various loads and

eypes of propellers which might eventually be wanted for

txperiments.

Table 51 gives examples of tables that show which factors

of the efficiency tests are the most important to determine.



APPENDIX

The following tables are given for the convenience of the

designer: Tables 52, 53, 54, 55 and 56 giving the squares
and cubes of velocities. Table 57 giving the cubes of revolu-

tions per minute and per second. Table 58 giving the 5th

powers of the diameters in feet.

TABLE 52. TABLE OF SQUARES AND CUBES OF VELOCITIES

V



394 AIRPLANE DESIGN AND CONSTRUCTION

TABLE 53. TABLE OF SQUARES AND CUBES OF VELOCITIES

V
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TABLE 54. TABLE OF SQUARES AND CUBES OF VELOCITIES
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TABLE 55. TABLE OF SQUARES AND CUBES OP VELOCITIES

V
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TABLE 56. TABLE OP SQUARES AND CUBES OF VELOCITIES

V
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TABLE 57. TABLE OF CUBES OF R.P.M. AND R.p.s.
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INDEX

Aerodynamical Laboratory, 90

Aerodynamics, elements of, 87,-101

Ailerons, 33

construction of, 35

Air pump pressure feed, 58

Aluminum, 234

uses of, 234

Angle of drift, 89

of incidence, 89

Axis, direction, 19

pitching, 19

principal, 19

rolling, 19

B

Banking, 31

angle of, 32

Biplane, effects of, system, 12

structure, 15

Cables, 225

splicing, 226

Canard type, 27

Ceiling, 195-203

Center of gravity, 273

position of, 273

Climbing, 188-203

influence of air density on, 189

speed, 130-133

time of, 191-194

Compressors, 70

Control surfaces, 19

sand test of, 286

Copper, uses of, 234

Cruising radius, 204-220

factors modifying, 214

Cubes, tables of, 393-397

D

Dihedral angle, 35

Dimensions of airplane, increasing

the, 209

Dispersion, angle of, 73

Distribution of masses, 211

Drag, definition of, 1

Drift, 1

E

Efficiency, factors influencing lift-

drag efficiency, 2

of sustaining group, 102

problems of, 161-166

Elastic cord, 256-258

curve method of spar analy-

sis, 306-311

work absorbed by, 257-258

Elevator, 20

computation, 322

function, 22

size of, 20

Engine, 51

center of gravity of, 56

characteristics of, for airplane,

51

function of, at high altitudes,

68-71

types of, 51

Fabrics, 247-256

Fifth powers table, 399

Fin computation, 314

Flat turning, 29

Flying characteristic determination,

358-378

Flying in the wind, 151-159

Flying tests, efficiency, 392

401



402 INDEX

Flying maneuvrability, 391

stability, 390

Flying with power on, 115-133

Forces acting on airplane in flight, 45

effect of, 45-46

Fuselage, 37-43

reverse curve in, 39

sand test of, 384

spar analysis of, 332

static analysis of, 324-334

types of, 39-40

value of K for, 39

G

Gasoline, multiple, tank, 58

piping for, feed, 60

types of, feed, 58-60

Glide, 102-114

angle of, 104

spiral, 111-114

Glues, 260

Great loads, 204-220

Materials for Aviation, 221-260

Metacentric curve, 137

Monocoque fuselage, 39

Motive quality, 165

Mufflers, 67

Multiplane surfaces, 211

Oil tank, position of, 58

Pitot tube, 91

Planning the project, 261-275

Pressure zone, 1

Principal axis, 19

Propeller, 72-85

efficiency of, 79-85

pitch, 74

profile of, blades, 75

static analysis of, 342-357

types of, 73

width of, blades, 74

Incidence, angle of, 88-89
Iron and steel in aviation, 222-234

Landing gear, 44-50

analysis of, 334-342

position of, 46

sand test of, 386

stresses on, 46-47

type of, 44

Leading edge, 6

function of, 6

Lift, 1

Lift-drag ratio, 2

efficiency of, 2

law of variation of, 6

value of, 2

M

Maneuvrability, 134-150

Marginal losses, 10

R

Radiators, 61-67

types of, 62

Resistance coefficients, 96-98
Rib construction, 16

Rubber cord, 47-48

binding of, 49

energy absorbed by, 47

Rudder, 36

balanced, 36

static analysis of, 315

Sand test, control surface, 386

fuselage, 384-385

landing gear, 386

wing truss, 379-384

Shock absorbers, 47-48

uses of, 47

Spar analysis, 276-288

Speed, 167-187

means to increase, 168



INDEX 403

Spiral gliding, 111-114

Squares, tables of, 393-397

Stability, 134-150

directional, 141

intrinsic, 147

lateral, 140

transversal, 141

zones of, 139

Stabilizer, computation of, 322

dimension of, 20

effects of, action, 137

function of, 20

mechanical, 147-150

shape of, 20

Static analysis, of control surfaces,

315-323

of fuselage, 324-334

of main planes, 276-314

Streamline wire, 225

Struts, fittings, 18

computations, 294-296

tables, 297-300

Sustentation phenomena, 1

Synchronizers, 73

Tail skid, 49, 50

uses of, 50

Tail system computations, 314-323

Tandem surfaces, 211

Tangent flying, 121

Tie rods, 226

Trailing edge, function of, 9

Transmission gear, 56

Transversal stability, 30

Triplane, effect of, system, 12

Truss analysis, 288-292

Tubing, tables for round, 229-231

table of moment of inertia for

round, 231

of weights for round, 230

tables of streamline, 232-233

U

Unit loading, 12, 278, 279

Useful load increase, 212

Varnishes, 259

finishing, 259

stretching, 259

Veneers, 241-254

tables for Haskelite, 246-254

W

Weighing the airplane, 389

Wind, effect of, on stability, 156

Wing, analysis of, truss, 276

element of, efficiency. 9

elements of, 3

sand test of, 379

unit stress on, 306-314

Wires, steel, tables, 224

streamline, 225

Wood, 234-254

characteristics of various. 236-

239
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